EXERCISE 1.1

Q. 1 Given that:

(a) $f(x)=x^{2}-x$
(b) $f(x)=\sqrt{x+4}$

Find: (i) $\quad \mathbf{f}(-2)$
(ii) $\mathbf{f}(\mathbf{0})$
(iii) $\mathbf{f}(\mathbf{x}-1)$
(iv) $f\left(x^{2}+4\right)$

Solution:

(a)

$$
f(x)=x^{2}-x
$$

(i)

$$
f(-2)=(-2)^{2}-(-2)
$$

$$
=4+2=6 \quad \text { Ans. }
$$

$$
\begin{equation*}
f(0)=(0)^{2}-0 \tag{ii}
\end{equation*}
$$

$$
=0 \quad \text { Ans }
$$

$$
\begin{align*}
\mathrm{f}(\mathrm{x}-1) & =(\mathrm{x}-1)^{2}-(\mathrm{x}-1) \tag{iii}\\
& =\mathrm{x}^{2}-2 \mathrm{x}+1-\mathrm{x}+1 \\
& =\mathrm{x}^{2}-3 \mathrm{x}+2 \\
\mathrm{~A}\left(\mathrm{x}^{2}+4\right) & =\left(\mathrm{x}^{2}+4\right)^{2}-\left(\mathrm{x}^{2}+4\right) \\
& =\mathrm{x}^{4}+8 \mathrm{x}^{2}+16-\mathrm{x}^{2}-4 \\
& =\mathrm{x}^{4}+7 \mathrm{x}^{2}+12
\end{align*}
$$

(i) $f(-2)=\sqrt{-2+4}=\sqrt{2}$ Ans.
(ii) $\mathrm{f}(0)=\sqrt{0+4}=\sqrt{4}=2$ Ans.
(iii) $\quad f(x-1)=\sqrt{x-1+4}=$
(iv) $\quad f\left(x^{2}+4\right)=\sqrt{x^{2}+4+4}=\sqrt{x^{2}+8} \quad$ Ans.
Q. 2 Find $\frac{f(a+h)-f(a)}{h}$ and simplify where,
(i) $\quad f(x)=6 x-9$
(ii) $\quad \mathbf{f}(\mathbf{x})=\sin x$
(iii) $f(x)=x^{3}+2 x^{2}-1$
(iv) $\quad f(x)=\cos x$

Solution:

(i)

$$
\begin{aligned}
\mathbf{f}(\mathbf{x}) & =\mathbf{6 x}-\mathbf{9} \\
\mathrm{f}(\mathrm{a}+\mathrm{h}) & =6(\mathrm{a}+\mathrm{h})-9 \\
\mathrm{f}(\mathrm{a}+\mathrm{h}) & =6 a+6 \mathrm{~h}-9 \\
\mathrm{f}(\mathrm{a}) & =6 \mathrm{a}-9
\end{aligned}
$$

$$
\begin{aligned}
\frac{f(a+h)-f(a)}{h} & =\frac{6 a+6 h-9-(6 a-9)}{h} \\
& =\frac{6 a+6 h-9-6 a+9}{h} \\
& =\frac{6 h}{h} \\
& =6 \text { Ans. }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& f(x)=\sin x \quad \text { (Lahore Board 2008) } \\
& f(a+h)=\sin (a+h) \\
& f(a)=\sin a \\
& \frac{f(a+h)-f(a)}{h}=\frac{\sin (a+h)-\sin a}{h} \\
& =\frac{2 \cos \left(\frac{a+h+a}{2}\right) \sin \left(\frac{a+h-a}{2}\right)}{h} \because \sin p-\sin q=2 \cos \left(\frac{p+q}{2}\right) \sin \left(\frac{p-q}{2}\right) \\
& =\quad \frac{2}{\mathrm{~h}} \cos \left(\frac{2 \mathrm{a}+\mathrm{h}}{2}\right) \sin \left(\frac{\mathrm{h}}{2}\right) \\
& =\quad \frac{2}{\mathrm{~h}} \cos \left(\frac{2 \mathrm{a}}{2}+\frac{\mathrm{h}}{2}\right) \sin \left(\frac{\mathrm{h}}{2}\right) \\
& =\frac{2}{\mathrm{~h}} \cos \left(\mathrm{a}+\frac{\mathrm{h}}{2}\right) \sin \left(\frac{\mathrm{h}}{2}\right) \\
& \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& f(a+h)=(a+h)^{3}+2(a+h)^{2}-1 \\
& =\quad a^{3}+h^{3}+3 a^{2} h+3 a h^{2}+2\left(a^{2}+2 a h+h^{2}\right)-1 \quad \because\left[(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}\right] \\
& =\quad a^{3}+h^{3}+3 a^{2} h+3 a h^{2}+2 a^{2}+4 a h+2 h^{2}-1 \\
& \mathrm{f}(\mathrm{a})=\mathrm{a}^{3}+2 \mathrm{a}^{2}-1 \\
& \frac{f(a+h)-f(a)}{h}=\frac{a^{3}+h^{3}+3 a^{2} h+3 a h^{2}+2 a^{2}+4 a h+2 h^{2}-1-\left(a^{3}+2 a^{2}-1\right)}{h} \\
& =\frac{a^{3}+h^{3}+3 a^{2} h+3 a h^{2}+2 a^{2}+4 a h+2 h^{2}-1-a^{3}-2 a^{2}+1}{h} \\
& =\frac{h^{3}+3 a^{2} h+3 a h^{2}+4 a h+2 h^{2}}{h} \\
& =\frac{h\left(h^{2}+3 a^{2}+3 a h+4 a+2 h\right)}{h} \\
& =h^{2}+(3 a+2) h+3 a^{2}+4 a \quad \text { Ans. }
\end{aligned}
$$

(iii)
(iv) $\quad \mathbf{f}(\mathbf{x})=\cos x$

$$
\begin{aligned}
f(a+h) & =\cos (a+h) \\
f(a) & =\cos a \\
\frac{f(a+h)-f(a)}{h} & =\frac{\cos (a+h)-\cos a}{h} \\
& =\frac{-2 \sin \left(\frac{a+h+a}{2}\right) \sin \left(\frac{a+h-a}{2}\right)}{h} \\
& =\frac{-2}{h} \sin \left(\frac{2 a+h}{2}\right) \sin \left(\frac{h}{2}\right) \\
& =\frac{-2}{h} \sin \left(\frac{2 a}{2}+\frac{h}{2}\right) \sin \left(\frac{h}{2}\right) \\
& \left.=\frac{-2}{h} \sin \left(a+\frac{h}{2}\right) \cos q=-2 \sin \left(\frac{h}{2}\right)\right) \text { Ans. }
\end{aligned}
$$

Q. 3 Express the following: (Lahore Board 2009-2010)
(a) The perimeter P of square as a function of its area A.
(b) The area A of a circle as a function of its circumference C.
(c) The volume V of a cube as a function of the area A of its base.

Solution:

TALEEMCITY.COM

(a) Let,

$$
\begin{aligned}
\text { Length of square } & =\mathrm{x} \\
\text { Width of square } & =\mathrm{x}
\end{aligned}
$$

Perimeter of a square $=P=x+x+x+x$

$$
\begin{equation*}
P=4 x \tag{1}
\end{equation*}
$$

Area of a square $=A=x \times x$

$$
A=x^{2}
$$

$$
x=\sqrt{A}
$$

Put $\quad x=\sqrt{A}$ in equation (1)

$$
\mathrm{P}=4 \sqrt{\mathrm{~A}}
$$

Shows perimeter P of a square as a function of its area A.
(b) Let ' r ' be the radius of the circle.

Area of a circle $=A=\pi r^{2}$
Circumference of a circle $=\mathrm{C}=2 \pi \mathrm{r}$

$$
\mathrm{r}=\frac{\mathrm{C}}{2 \pi}
$$

Put $\quad r=\frac{C}{2 \pi}$ in equation (1)

$$
\begin{aligned}
& \mathrm{A}=\pi\left(\frac{\mathrm{C}}{2 \pi}\right)^{2}=\frac{\pi \mathrm{C}^{2}}{4 \pi^{2}} \\
& \mathrm{~A}=\frac{\mathrm{C}^{2}}{4 \pi}
\end{aligned}
$$

Shows area A of a circle as a function of its circumference C.
(c) Let x be the each side of cube. (Gujranwala Board 2008)

Volume of cube $=\mathrm{V}=\mathrm{x} \times \mathrm{x} \times \mathrm{x}$

$$
\mathrm{V}=\mathrm{x}^{3} \quad \ldots \ldots \ldots(1)
$$

Area of base $=\mathrm{A}_{2}=\mathrm{x} \times \mathrm{x}$ 口ub
$\mathrm{A}=\mathrm{x}^{2}$ $x=\sqrt{A}$
Put,

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\mathrm{A}} \text { in equation (1) } \\
& \mathrm{V}=(\sqrt{\mathrm{A}})^{3} \\
& \mathrm{~V}=\mathrm{A}^{3 / 2} \mathrm{~A}
\end{aligned}
$$

Shows volume V of a cube as a function of the area A of its base.

Q. 4 Find the domain and the range of the function g defined below and sketch of

 graph of \mathbf{g}.(i) $\quad g(x)=2 x-5$
(ii) $g(x)=\sqrt{x^{2}-4}$
(iii) $\quad g(x)=\sqrt{x+1}$ (Lhr.Board-2011)
(iv) $g(x)=|x-3|$
(v) $\quad g(x)= \begin{cases}6 x+7 & , x \leq-2 \\ x-3 & , x>-2\end{cases}$
(vi) $g(x)= \begin{cases}x-1 & , x<3 \\ 2 x+1 & , 3 \leq x\end{cases}$
(vii) $g(x)=\frac{x^{2}+3 x+2}{x+1}, x \neq-1$
(viii) $g(x)=\frac{x^{2}-16}{x-4}, x \neq 4$

Solution:

(i)

$$
g(x)=2 x-5
$$

Domain of $g(x)=$ Set of all real numbers
Range of $g(x)=$ Set of all real numbers

x	-3	-2	-1	0	1	2	3
$\mathrm{~g}(\mathrm{x})=2 \mathrm{x}-5$	-7	-9	-7	-5	-3	-1	1

(ii) $\quad g(x)=\sqrt{x^{2}-4}$
(Lahore Board 2008)
Domain of $g(x)=R-(-2,2)=[0,+\infty)$
Range of $g(x)=[0,001$

x	-4	-3	-2	2	3	4
$g(x)=\sqrt{x^{2}-4}$	$2 \sqrt{3}$	$\sqrt{5}$	0	0	$\sqrt{5}$	$2 \sqrt{3}$

(iii) $\mathbf{g}(\mathbf{x})=\sqrt{\mathbf{x + 1}}$

Domain of $\mathrm{g}(\mathrm{x})=[-1,+\infty)$
Range of $\mathrm{g}(\mathrm{x})=[0,+\infty)$

x	-1	0	1	2	3	4
$\mathrm{~g}(\mathrm{x})=\sqrt{\mathrm{x}+1}$	0	1	$\sqrt{2}$	$\sqrt{3}$	2	$\sqrt{5}$

(iv) $\quad \mathbf{g}(\mathbf{x})=|\mathbf{x}-3|$

Domain of $\mathrm{g}(\mathrm{x})=(-\infty,+\infty)$
Range of $g(x)=[0,+\infty)$

x	-3	-2	$=1$	1	0	1	2	3	4
$\mathrm{~g}(\mathrm{x})=\mathrm{x}-3 \mid$	6	5	4	3	2	1	0	1	2

(v) $g(x)= \begin{cases}6 x+7 & , x \leq-2 \\ x-3 & , x>-2\end{cases}$

Domain of $g(x)=(-\infty,+\infty)$
Range of $g(x)=(-\infty,+\infty)$

$x \leq-2$	-2	-3	-4	-5
$g(x)=6 x+7$	-5	-11	-17	-23

$x>-2$	-1	0	1	2	3	3
$g(x)=x-3$	-4	-3	-2	-1	0	1

(vi) $\quad g(x)=\left\{\begin{array}{l}x-1, \quad x<3 \\ 2 x+1,3 \leq x\end{array}\right.$

Domain of $g(x)=(-\infty,+\infty)$
Range of $g(x)=(-\infty, 2) \cup[7,+\infty)$

$\mathrm{x}<3$	-2	-1	0	1	2
$\mathrm{~g}(\mathrm{x})=\mathrm{x}-1$	-3	-2	-1	0	1

$x \geq 3$	3	4	5	6
$g(x)=2 x+1$	7	9	11	13

(vii)

$$
\begin{aligned}
\mathbf{g}(\mathbf{x}) & =\frac{\mathbf{x}^{2}+3 x+2}{x+1}, \quad \mathbf{x} \neq-\mathbf{1} \\
g(x) & =\frac{x^{2}+2 x+x+2}{x+1} \\
& =\frac{x(x+2)+1(x+2)}{x+1} \\
& =\frac{(x+2)(x+1)}{x+1}=x+2
\end{aligned}
$$

Domain of $g(x)=R-\{-1\}$
Range of $g(x)=R-\{1\}$

x	-3	-2	0	1	2
$\mathrm{~g}(\mathrm{x})=\mathrm{x}+2$	-1	0	2	3	4

Q. 5 Given $f(x)=x^{3}-a x^{2}+b x+1$.

If $f(2)=-3$ and $f(-1)=0$. Find the values of a and b.

Solution:

$$
\begin{equation*}
f(x)=x^{3}-a x^{2}+b x+1 \tag{1}
\end{equation*}
$$

Put $\quad \mathrm{x}=2$ in equation (1)

$$
f(2)=(2)^{3}-a(2)^{2}+b(2)+1
$$

$$
=8-4 a+2 b+1
$$

$$
f(2)=9-4 a+2 b
$$

Put $\mathrm{x}=-1$ in equation (1)

$$
\begin{aligned}
\mathrm{f}(-1) & =(-1)^{3}-\mathrm{a}(-1)^{2}+\mathrm{b}(-1)+1 \\
& =-1-\mathrm{a}-\mathrm{b}+1 \\
\mathrm{f}(-1) & =-\mathrm{a}-\mathrm{b}
\end{aligned}
$$

Since $f(2)=-3$

$$
9-4 a+2 b=-3
$$

$$
\begin{aligned}
-4 a+2 b & =-3-9 \\
-2(2 a-b) & =-12
\end{aligned}
$$

$$
2 \mathrm{a}-\mathrm{b}=\frac{-12}{-2}
$$

$$
2 a-b=6
$$

(2)

And

$$
\begin{align*}
\mathrm{f}(-1) & =0 \\
-\mathrm{a}-\mathrm{b} & =0 \\
-\mathrm{a} & =\mathrm{b} \\
\mathrm{a} & =-\mathrm{b} \tag{3}
\end{align*}
$$

$$
\text { Put } \quad \mathrm{a}=-\mathrm{b} \text { in equation (2) }
$$

$$
2(-b)-b=6
$$

$$
-2 b-b=6
$$

$$
-3 b=6
$$

$$
b=\frac{6}{-3}=-2
$$

Put $\quad b=-2$ in equation (2)

$$
\begin{aligned}
& \mathrm{a}=-(-2) \\
& \mathrm{a}=2 \\
& \therefore \quad \mathrm{a}=2, \mathrm{~b}=-2 \text { Ans. }
\end{aligned}
$$

Q. 6 A stone falls from a height of $\mathbf{6 0 m}$ on the ground, the height h after \mathbf{x} second is approximately given by $h(x)=40-10 x^{2}$.
(i) What is the height of the stone when.
(a) $\mathrm{x}=1 \mathrm{sec}$
(b) $\mathrm{x}=1.5 \mathrm{sec}$
(c) $\mathrm{x}=1.7 \mathrm{sec}$
(ii) When does the stone strike the ground?

Solution:

(i)

$$
\begin{equation*}
h(x)=40-10 x^{2} \tag{1}
\end{equation*}
$$

(a) Put $x=1 \sec$ in equation (1)

$$
h(1)=40-10(1)^{2}
$$

$$
=40-10
$$

$$
=30 \mathrm{~m} \quad \text { Ans. }
$$

(b) Put $\mathrm{x}=1.5 \mathrm{sec}$ in equation (1)

$$
\begin{aligned}
\mathrm{h}(1.5) & =40-10(1.5)^{2} \\
& =40-10(2.25) \\
& =40-22.5 \\
& =17.5 \mathrm{~m} \quad \text { Ans. }
\end{aligned}
$$

(c) Put $\begin{aligned} x & =1.7 \mathrm{sec} \text { in equation (1) } \\ \mathrm{h}(1.7) & =40-10(1.7)^{2}\end{aligned}$

$$
h(1.7)=40-10(1.7)^{2}
$$

$$
=40-10(2.89)
$$

$$
=40-28.9
$$

$$
=11.1 \mathrm{~m} \text { Ans. }
$$

(ii) When then the stone strike the ground. 1.00 M
then $h(x)=0$

$$
\begin{aligned}
& 0=40-10 x^{2} \\
& 10 x^{2}=40 \\
& x^{2}=\frac{40}{10} \\
& x^{2}=4 \\
& x=2 \sec \text { Ans. }
\end{aligned}
$$

Q.7: Show that the Parametric equations.
(i) $\quad x=a t^{2}, y=2 a t$ represent the equation of Parabola $y^{2}=4 a x$
(ii) $x=\operatorname{acos} \theta, y=b \sin \theta$ represent the equation of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(iii) $x=\operatorname{asec} \theta, y=b \tan \theta$ represent the equation of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Solution:

(i) $\mathrm{x}=\mathrm{at}^{2}$ \qquad (i) , y $=2 \mathrm{at}$
(ii)

From equation (ii)
$\mathrm{t}=\frac{\mathrm{y}}{2 \mathrm{a}}$
Putting it in (i)
$x=a\left(\frac{y}{2 a}\right)^{2}=a\left(\frac{y^{2}}{4 a^{2}}\right)$
$y^{2}=4 a x$ Hence proved.
(ii) $\mathrm{x}=\operatorname{acos} \theta$
$\frac{\mathrm{x}}{\mathrm{a}}=\cos \theta$
Squaring on both sides
$\frac{x^{2}}{a^{2}}=\cos ^{2} \theta$

$$
\begin{aligned}
& \mathrm{y}=\mathrm{b} \sin \theta \\
& \frac{\mathrm{y}}{\mathrm{~b}}=\sin \theta
\end{aligned}
$$

Squaring on both sides
$\frac{y^{2}}{b^{2}}=\sin ^{2} \theta$
Adding equation (i) \& equation (ii)

Squaring on both sides \cap = $=$ Squaring on both sides $\frac{x^{2}}{a^{2}}=\sec ^{2} \theta$
$\frac{y^{2}}{b^{2}}=\tan ^{2} \theta$

Subtracting equation (ii) from equation (i)

$$
\begin{aligned}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =\sec ^{2} \theta-\tan ^{2} \theta \\
& =1+\tan ^{2} \theta-\tan ^{2} \theta \\
& =1 \quad \text { Hence proved. }
\end{aligned}
$$

Q. 8 Prove the identities:
(i) $\quad \sinh 2 x=2 \sinh x \cosh \quad$ (Lahore Board 2006)
(ii) $\operatorname{sech}^{2} x=1-\tanh ^{2} x$
(iii) $\operatorname{cosech}^{2} x=\operatorname{coth}^{2} x-1$

Solution:

(i) $\quad \sinh 2 x=2 \sinh x \cos h x$
R.H.S $=2 \sinh x \cosh x$

$$
\begin{aligned}
& =2\left(\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}\right)\left(\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}\right) \\
& =\frac{\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}}{2} \\
& =\sin \mathrm{h} 2 \mathrm{x} \\
& =\text { L.H.S. Hence proved. }
\end{aligned}
$$

(ii) $\quad \sec ^{2} x=1-\tan ^{2}{ }^{2} x$

$$
\text { R.H.S }=1-\tan ^{2} \mathrm{~h}^{2}
$$

$$
=1-\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{2}
$$

$$
=1-\frac{\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)^{2}}{\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)^{2}}
$$

$$
=\frac{\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)^{2}-\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)^{2}}{\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)^{2}}
$$

$$
\begin{aligned}
& =\frac{\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}+2 \mathrm{e}^{\mathrm{x}} \cdot \mathrm{e}^{-\mathrm{x}}-\left(\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}-2 \mathrm{e}^{\mathrm{x}} \cdot \mathrm{e}^{-\mathrm{x}}\right)}{\left(\mathrm{e}^{x}+\mathrm{e}^{-\mathrm{x}}\right)^{2}} \\
& =\frac{\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}+2-\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}+2}{\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-x}\right)^{2}} \\
& =\frac{4}{\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)^{2}}
\end{aligned}
$$

$$
=\left(\frac{2}{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}\right)^{2} 1 \square \square=\mathrm{M} 01 \mathrm{M}, 00
$$

$$
=(\sec h x)^{2}
$$

$$
=\operatorname{sech}^{2} \mathrm{x}
$$

$$
=\text { L.H.S Hence proved }
$$

(iii) $\quad \operatorname{cosec}^{2} x=\operatorname{coth}^{2} x-1$

$$
\begin{aligned}
\text { R.H.S } & =\cot h^{2} x-1 \\
& =\left(\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}\right)^{2}-1 \\
& =\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}-1} \\
& =\frac{\left(e^{x}+e^{-x}\right)^{2}-\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}-e^{-x}\right)^{2}} \\
& =\frac{e^{2 x}+e^{-2 x}+2 e^{x} e^{-x}-\left(e^{2 x}+e^{-2 x}-2 e^{x} \cdot e^{-x}\right)}{\left(e^{x}-e^{-x}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}+2-\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}+2}{\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)^{2}} \\
& =\frac{4}{\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-x}\right)^{2}} \\
& =\left(\frac{2}{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}\right)^{2} \\
& =(\operatorname{cosech} \mathrm{x})^{2}=\operatorname{cosech}^{2} \mathrm{x} \\
& =\text { L.H.S Hence proved }
\end{aligned}
$$

Q. 9 Determine whether the given function f is even or odd:
(i) $f(x)=x^{3}+x$
(ii) $f(x)=(x+2)^{2}$
(iii) $f(x)=x \sqrt{x^{2}+5}$
(iv) $f(x)=\frac{x-1}{x+1}, x \neq-1$
(v) $\quad f(x)=x^{2 / 3}+6$
(vi) $f(x)=\frac{x^{3}-x}{x^{2}+1}$

Solution:

(i) $f(x)=x^{3}+x$

$$
\begin{aligned}
& \mathrm{x}+\mathrm{x} \\
& \mathrm{f}(-\mathrm{x})=(-\mathrm{x})^{3}+(-\mathrm{x}) \\
&=-\mathrm{x}^{3}-\mathrm{x} \\
&=-\left(\mathrm{x}^{3}+\mathrm{x}\right) \\
&=-\mathrm{f}(\mathrm{x})
\end{aligned}
$$

$\therefore \quad \mathrm{f}(\mathrm{x})$ is an odd function. $=\mathrm{H}$. 1.00 H
(ii) $\quad \mathrm{f}(\mathrm{x})=(\mathrm{x}+2)^{2}$

$$
\begin{aligned}
\mathrm{f}(-\mathrm{x}) & =(-\mathrm{x}+2)^{2} \\
& \neq \pm \mathrm{f}(\mathrm{x})
\end{aligned}
$$

$\therefore \quad f(x)$ is neither even nor odd function.
(iii) $f(x)=x \sqrt{x^{2}+5}$

$$
\begin{aligned}
\mathrm{f}(-\mathrm{x}) & =-\mathrm{x} \sqrt{(-\mathrm{x})^{2}+5} \\
& =-\mathrm{x} \sqrt{\mathrm{x}^{2}+5} \\
& =-\mathrm{f}(\mathrm{x})
\end{aligned}
$$

$\therefore \quad \mathrm{f}(\mathrm{x})$ is an odd function.
(iv) $\quad f(x)=\frac{x-1}{x+1}, x \neq-1$

$$
f(-x)=\frac{-x-1}{-x+1}=\frac{-(x+1)}{-(x-1)}
$$

$$
=\frac{\mathrm{x}+1}{\mathrm{x}-1} \neq \pm \mathrm{f}(\mathrm{x})
$$

$\therefore \quad \mathrm{f}(\mathrm{x})$ is neither even nor odd function.
(v) $\quad f(x)=x^{2 / 3}+6$

$$
\begin{aligned}
\mathrm{f}(-\mathrm{x}) & =(-\mathrm{x})^{2 / 3}+6 \\
& =\left[(-\mathrm{x})^{2}\right]^{1 / 3}+6 \\
& =\left(\mathrm{x}^{2}\right)^{1 / 3}+6 \\
& =\mathrm{x}^{2 / 3}+6 \\
& =\mathrm{f}(\mathrm{x})
\end{aligned}
$$

$\therefore \quad f(x)$ is an even function.
(vi) $f(x)=\frac{x^{3}-x}{x^{2}+1}$

$$
\begin{aligned}
& f(-x)=\frac{(-x)^{3}-(-x)}{(-x)^{2}+1}
\end{aligned}
$$

$\therefore \quad \mathrm{f}(\mathrm{x})$ is an odd function.

Composition of Functions:

Let f be a function from set X to set Y and g be a function from set Y to set Z . The composition of f and g is a function, denoted by gof, from X to Z and is defined by.

$$
(\mathrm{gof})(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{gf}(\mathrm{x}) \text { for all } \mathrm{x} \in \mathrm{X}
$$

Inverse of a Function:

Let f be one-one function from X onto Y . The inverse function of f , denoted by f^{-1}, is a function from Y onto X and is defined by.

$$
\mathrm{x}=\mathrm{f}^{-1}(\mathrm{y}), \forall \mathrm{y} \in \mathrm{Y} \text { if and only if } \mathrm{y}=\mathrm{f}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{X}
$$

EXERCISE 1.2

Q. 1 The real valued functions f and g are defined below. Find
(a) $\quad \mathrm{fog}(\mathrm{x})$
(b) gof (x)
(c) fof (x)
(d) $\operatorname{gog}(x)$
(i) $\quad f(x)=2 x+1 \quad ; \quad g(x)=\frac{3}{x-1} \quad, \quad x \neq 1$

