		EXERC	ISE	1.1	
01	Q.1 Given that:				
Q.1		$\mathbf{f}(\mathbf{x}) = \mathbf{x}^2 - \mathbf{x}$	(b)	$\mathbf{f}(\mathbf{x}) = \sqrt{\mathbf{x} + 4}$	
Find:	(i)		(ii)	• •	
		f(x-1)		$f(x^2 + 4)$	
Solution:					
(a)		$f(x) = x^2 - x$			
(i)		$f(-2) = (-2)^2 - (-2)$			
		= 4 + 2 = 6 Ans.			
(ii)		$f(0) = (0)^2 - 0$			
(:::)	£(,	$= 0 Ans. (x - 1) = (x - 1)^{2} - (x - 1)$			
(iii)	1(.	(x - 1) = (x - 1) - (x - 1) = $x^2 - 2x + 1 - x + 1$	b	64.2	
		$= x^{2} - 2x + 1 - x + 1$ = $x^{2} - 3x + 2$ Ans.		111	
(iv)	f(x ²	$(x^{2}+4) = (x^{2}+4)^{2} - (x^{2}+4)^{2}$	b-		
()	-($= x^4 + 8x^2 + 16 - x^2 -$			
		$= x^4 + 7x^2 + 12$ A	ns.		
(b)	f(x)	$= \sqrt{x+4}$ TALEEM	CITY	.COM	
(i)	f(-2)	$=\sqrt{-2+4}$ $=\sqrt{2}$ Ans.			
(ii)	f(0)	$= \sqrt{0+4} = \sqrt{4} = 2$ A	ns.		
(iii)	f(2	$(x-1) = \sqrt{x-1+4} =$			
(iv)	f(x ²	$(x^2 + 4) = \sqrt{x^2 + 4 + 4} = \sqrt{x^2 + 4 + 4}$	$x^{2} + 8$	Ans.	
Q.2	Q.2 Find $\frac{f(a+h) - f(a)}{h}$ and simplify where,				
	(i)	f(x) = 6x - 9	(ii)	$f(x) = \sin x$	
		$f(x) = x^3 + 2x^2 - 1$	(iv)		
Solution:					
(i)		$\mathbf{f}(\mathbf{x}) = 6\mathbf{x} - 9$			
	f(a	(a + h) = 6(a + h) - 9			
	f(a+h) = 6a+6h-9				
		f(a) = 6a - 9			

$$\begin{aligned} \frac{f(a+h)-f(a)}{h} &= \frac{6a+6h-9-(6a-9)}{h} \\ &= \frac{6a+6h-9-6a+9}{h} \\ &= \frac{6h}{h} \\ &= 6 \text{ Ans.} \end{aligned}$$
(ii) $\mathbf{f}(\mathbf{x}) &= \sin \mathbf{x}$ (Lahore Board 2008)
 $f(a+h) &= \sin (a+h) \\ f(a) &= \sin a \\ \frac{f(a+h)-f(a)}{h} &= \frac{\sin(a+h)-\sin a}{h} \\ &= \frac{2\cos\left(\frac{a+h+a}{2}\right)\sin\left(\frac{a+h-a}{2}\right)}{h} \because \sin p - \sin q = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right) \\ &= \frac{2}{h}\cos\left(\frac{2a+h}{2}\right)\sin\left(\frac{h}{2}\right) \\ &= \frac{2}{h}\cos\left(\frac{2a+h}{2}\right)\sin\left(\frac{h}{2}\right) \\ &= \frac{2}{h}\cos\left(\frac{2a+h}{2}\right)\sin\left(\frac{h}{2}\right) \\ &= \frac{2}{h}\cos\left(\frac{2a+h}{2}\right)\sin\left(\frac{h}{2}\right) \\ &= \frac{2}{h}\cos\left(\frac{a+h+3}{2}\right)\sin\left(\frac{h}{2}\right) \\ &= \frac{2}{h}\cos\left(\frac{a+h+3}{2}\right)\sin\left(\frac{h}{2}\right) \\ &= a^3+h^3+3a^2h+3ah^2+2(a+2h+h^2)-1 \\ &= a^3+h^3+3a^2h+3ah^2+2a^2+4ah+2h^2-1 \\ f(a) &= a^3+h^3+3a^2h+3ah^2+2a^2+4ah+2h^2-1 \\ f(a) &= a^3+h^3+3a^2h+3ah^2+2a^2+4ah+2h^2-1 \\ &= \frac{a^3+h^3+3a^2h+3ah^2+3ah^2+2a^2+4ah+2h^2-1-(a^3+2a^2-1)}{h} \\ &= \frac{a^3+h^3+3a^2h+3ah^2+3ah^2+2a^2+4ah+2h^2-1-(a^3-2a^2+1)}{h} \\ &= \frac{a^3+h^3+3a^2h+3ah^2+3ah^2+2a^2+4ah+2h^2-1-(a^3-2a^2+1)}{h} \\ &= \frac{a^3+h^3+3a^2h+3ah^2+4ah+2h^2}{h} \\ &= \frac{h(h^2+3a^2+3ah+4a+2h)}{h} \\ &= h^2+(3a+2)h+3a^2+4a$ Ans.

(iv)

$$\begin{aligned} \mathbf{f}(\mathbf{x}) &= \cos \mathbf{x} \\ \mathbf{f}(\mathbf{a} + \mathbf{h}) &= \cos (\mathbf{a} + \mathbf{h}) \\ \mathbf{f}(\mathbf{a}) &= \cos \mathbf{a} \\ \frac{\mathbf{f}(\mathbf{a} + \mathbf{h}) - \mathbf{f}(\mathbf{a})}{\mathbf{h}} &= \frac{\cos (\mathbf{a} + \mathbf{h}) - \cos \mathbf{a}}{\mathbf{h}} \\ &= \frac{-2 \sin \left(\frac{\mathbf{a} + \mathbf{h} + \mathbf{a}}{2}\right) \sin \left(\frac{\mathbf{a} + \mathbf{h} - \mathbf{a}}{2}\right)}{\mathbf{h}} \\ &\qquad \because \left[\cosh p - \cos q = -2 \sin \left(\frac{p + q}{2}\right) \sin \left(\frac{p - q}{2}\right) \right] \\ &= \frac{-2}{\mathbf{h}} \sin \left(\frac{2\mathbf{a} + \mathbf{h}}{2}\right) \sin \left(\frac{\mathbf{h}}{2}\right) \\ &= \frac{-2}{\mathbf{h}} \sin \left(\frac{2\mathbf{a}}{2} + \frac{\mathbf{h}}{2}\right) \sin \left(\frac{\mathbf{h}}{2}\right) \end{aligned}$$

$$= \frac{-2}{h}\sin\left(a+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right) \quad \text{Ans.}$$

Q.3 Express the following:

x

- (a) The perimeter P of square as a function of its area A.
- (b) The area A of a circle as a function of its circumference C.
- (c) The volume V of a cube as a function of the area A of its base.

Solution:

(a) Let, (a) Let, Width of square = x Perimeter of a square = P = x + x + x + x P = 4x(1) Area of a square = A = x × x A = x^2 $x = \sqrt{A}$ Put $x = \sqrt{A}$ in equation (1) $P = 4\sqrt{A}$

Shows perimeter P of a square as a function of its area A.

(b) Let 'r' be the radius of the circle. Area of a circle = $A = \pi r^2$ (1) Circumference of a circle = $C = 2\pi r$ $r = \frac{C}{2\pi}$

Put
$$r = \frac{C}{2\pi}$$
 in equation (1)
 $A = \pi \left(\frac{C}{2\pi}\right)^2 = \frac{\pi C^2}{4\pi^2}$
 $A = \frac{C^2}{4\pi}$

Shows area A of a circle as a function of its circumference C.

(c) Let x be the each side of cube. (*Gujranwala Board 2008*)

Volume of cube =
$$V = x \times x \times x$$

 $V = x^3$ (1)
Area of base = $A = x \times x$
 $A = x^2$
 $x = \sqrt{A}$
Put, $x = \sqrt{A}$ in equation (1)
 $V = (\sqrt{A})^3$
 $V = A^{3/2}$ ALEEMCITY.COM

Shows volume V of a cube as a function of the area A of its base.

- Q.4 Find the domain and the range of the function g defined below and sketch of graph of g.
 - (i) g(x) = 2x 5(ii) $g(x) = \sqrt{x^2 - 4}$ (iii) $g(x) = \sqrt{x + 1}$ (*Lhr.Board-2011*) (iv) g(x) = |x - 3|(v) $g(x) = \begin{cases} 6x + 7, x \le -2 \\ x - 3, x > -2 \end{cases}$ (vi) $g(x) = \begin{cases} x - 1, x < 3 \\ 2x + 1, 3 \le x \end{cases}$ (vii) $g(x) = \frac{x^2 + 3x + 2}{x + 1}, x \ne -1$ (viii) $g(x) = \frac{x^2 - 16}{x - 4}, x \ne 4$

Solution:

(i)

$$g(x) = 2x - 5$$

Domain of $g(x) =$ Set of all real numbers
Range of $g(x) =$ Set of all real numbers

Mathematics (Part-II)

Mathematics (Part-II)

Q.5 Given $f(x) = x^3 - ax^2 + bx + 1$. If f(2) = -3 and f(-1) = 0. Find the values of a and b.

Solution:

0.6 A stone falls from a height of 60m on the ground, the height h after x second is approximately given by $h(x) = 40 - 10x^2$. What is the height of the stone when. **(i)** (a) $\mathbf{x} = 1 \sec \mathbf{x}$ (b) x = 1.5 sec(c) x = 1.7 secWhen does the stone strike the ground? **(ii)** Solution: $h(x) = 40 - 10x^2$ (i)(1) x = 1 sec in equation (1) (a) Put $h(1) = 40 - 10(1)^2$ = 40 - 10= 30mAns. x = 1.5 sec in equation (1) (b) Put $h(1.5) = 40 - 10(1.5)^2$ = 40 - 10 (2.25)= 40 - 22.5= 17.5m Ans. x = 1.7 sec in equation (1) (c) Put $h(1.7) = 40 - 10 (1.7)^2$ = 40 - 10 (2.89)= 40 - 28.9= 11.1 m Ans. When then the stone strike the ground. (ii) then h(x) = 0 $= 40 - 10x^2$ 0 $10x^2 = 40$ $x^2 = \frac{40}{10}$ $x^2 = 4$ $x = 2 \sec Ans.$ Show that the Parametric equations. **O.7**: $x = at^2$, y = 2at represent the equation of Parabola $y^2 = 4ax$ (i) x = acos θ , y = bsin θ represent the equation of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (ii) x = asec θ , y = btan θ represent the equation of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (iii) Solution:

(i) $x = at^2$ (i) , y = 2at(ii)

From equation (ii) t = $\frac{y}{2a}$ Putting it in (i) x = $a\left(\frac{y}{2a}\right)^2 = a\left(\frac{y^2}{4a^2}\right)$ $y^2 = 4ax$ Hence proved. $x = acos\theta$ (ii) = bsin θ y $\frac{\mathbf{x}}{\mathbf{a}} = \cos\theta$ y b = sin θ Squaring on both sides Squaring on both sides $\frac{x^2}{a^2} = \cos^2 \theta$ (i) $\frac{\mathbf{y}^2}{\mathbf{b}^2} = \sin^2 \theta \quad \dots \text{ (ii)}$ Adding equation (i) & equation (ii) $\frac{x^2}{a^2} + \frac{y^2}{h^2} = \cos^2\theta + \sin^2\theta$ = 1 Hence proved. $x = asec\theta$ (iii) = btan θ $\frac{\mathbf{x}}{\mathbf{a}} = \mathbf{sec}\boldsymbol{\theta}$ $= \tan \theta$ Squaring on both sides Squaring on both sides $\frac{x^2}{a^2} = \sec^2 \theta$ (i) $\frac{y^2}{h^2}$ $= \tan^2 \theta$ (ii) Subtracting equation (ii) from equation (i) $\frac{\mathbf{x}^2}{\mathbf{p}^2} - \frac{\mathbf{y}^2}{\mathbf{p}^2} = \sec^2\theta - \tan^2\theta$ $= 1 + \tan^2 \theta - \tan^2 \theta$ = 1 Hence proved. **Prove the identities: Q.8** sinh 2x $= 2 \sinh x \cos hx$ (Lahore Board 2006) (i) $\operatorname{sech}^2 x = 1 - \tanh^2 x$ (ii) $cosech^2 x = coth^2 x - 1$ (iii) Solution:

(i) $\sinh 2x = 2 \sinh x \cos hx$ R.H.S = 2sinhx coshx

$$= 2\left(\frac{e^{x} - e^{-x}}{2}\right)\left(\frac{e^{x} + e^{-x}}{2}\right)$$

$$= \frac{e^{2x} - e^{-2x}}{2}$$

$$= \sin h2x$$

$$= L.H.S. \text{ Hence proved.}$$
(ii) sec h²x = 1 - tan h²x
R.H.S = 1 - tan h²x

$$= 1 - \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right)^{2}$$

$$= 1 - \frac{(e^{x} - e^{-x})^{2}}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{(e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2}}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{e^{2x} + e^{-2x} + 2e^{x} - e^{-x} - (e^{2x} + e^{-2x} - 2e^{x} - e^{-x})}{(e^{x} + e^{-x})^{2}}$$

$$= \frac{e^{2x} + e^{-2x} + 2e^{-2x} - 2e^{x} - 2e^{x}$$

$$= \frac{e^{2x} + e^{-2x} + 2 - e^{2x} - e^{-2x} + 2}{(e^{x} - e^{-x})^{2}}$$
$$= \frac{4}{(e^{x} + e^{-x})^{2}}$$
$$= \left(\frac{2}{e^{x} - e^{-x}}\right)^{2}$$
$$= (\text{cosech}x)^{2} = \text{cosech}^{2}x$$
$$= \text{L.H.S} \text{ Hence proved}$$

Determine whether the given function f is even or odd: Q.9

(i)
$$f(x) = x^3 + x$$

(ii) $f(x) = (x+2)^2$
(iii) $f(x) = x\sqrt{x^2 + 5}$
(iv) $f(x) = \frac{x-1}{x+1}, x \neq -1$
(v) $f(x) = x^{2/3} + 6$
(vi) $f(x) = \frac{x^3 - x}{x^2 + 1}$

Solution:

Solution:
(i)
$$f(x) = x^3 + x$$

 $f(-x) = (-x)^3 + (-x)$
 $= -x^3 - x$
 $= -(x^3 + x)$
 $= -f(x)$
(ii) $f(x) = (x + 2)^2$
 $f(-x) = (-x + 2)^2$
 $\neq \pm f(x)$
 \therefore $f(x)$ is neither even nor odd function.
(iii) $f(x) = x\sqrt{x^2 + 5}$

(iii)
$$f(x) = x\sqrt{x^2 + 5}$$

 $f(-x) = -x\sqrt{(-x)^2 + 5}$
 $= -x\sqrt{x^2 + 5}$
 $= -f(x)$
 \therefore $f(x)$ is an odd function.

(iv)
$$f(x) = \frac{x-1}{x+1}$$
, $x \neq -1$
 $f(-x) = \frac{-x-1}{-x+1} = \frac{-(x+1)}{-(x-1)}$

$$= \frac{x+1}{x-1} \neq \pm f(x)$$

(v)
$$f(x) = x^{2/3} + 6$$

 $f(-x) = (-x)^{2/3} + 6$
 $= [(-x)^2]^{1/3} + 6$
 $= (x^2)^{1/3} + 6$
 $= x^{2/3} + 6$
 $= f(x)$

$$\therefore$$
 f(x) is an even function.

(vi)
$$f(x) = \frac{x^3 - x}{x^2 + 1}$$

 $f(-x) = \frac{(-x)^3 - (-x)}{(-x)^2 + 1}$
 $= \frac{-x^3 + x}{x^2 + 1}$
 $= \frac{-(x^3 - x)}{x^2 + 1}$
 $= -f(x)$

$$\therefore$$
 f(x) is an odd function.

Composition of Functions: TALEENCIT

Let f be a function from set X to set Y and g be a function from set Y to set Z. The composition of f and g is a function, denoted by gof, from X to Z and is defined by.

$$(gof)(x) = g(f(x)) = gf(x) \text{ for all } x \in X$$

Inverse of a Function:

Let f be one-one function from X onto Y. The inverse function of f, denoted by f^{-1} , is a function from Y onto X and is defined by.

$$x = f^{-1}(y)$$
, $\forall y \in Y$ if and only if $y = f(x)$, $\forall x \in X$

Q.1 The real valued functions f and g are defined below. Find (a) fog (x) (b) gof (x) (c) fof (x) (d) gog (x)

(i)
$$f(x) = 2x + 1$$
; $g(x) = \frac{3}{x-1}$, $x \neq 1$