$$= \frac{x+1}{x-1} \neq \pm f(x)$$

(v)
$$f(x) = x^{2/3} + 6$$

 $f(-x) = (-x)^{2/3} + 6$
 $= [(-x)^2]^{1/3} + 6$
 $= (x^2)^{1/3} + 6$
 $= x^{2/3} + 6$
 $= f(x)$

$$\therefore$$
 f(x) is an even function.

(vi)
$$f(x) = \frac{x^3 - x}{x^2 + 1}$$

 $f(-x) = \frac{(-x)^3 - (-x)}{(-x)^2 + 1}$
 $= \frac{-x^3 + x}{x^2 + 1}$
 $= \frac{-(x^3 - x)}{x^2 + 1}$
 $= -f(x)$

$$\therefore$$
 f(x) is an odd function.

Composition of Functions: TALEENCIT

Let f be a function from set X to set Y and g be a function from set Y to set Z. The composition of f and g is a function, denoted by gof, from X to Z and is defined by.

$$(gof)(x) = g(f(x)) = gf(x) \text{ for all } x \in X$$

Inverse of a Function:

Let f be one-one function from X onto Y. The inverse function of f, denoted by f^{-1} , is a function from Y onto X and is defined by.

$$x = f^{-1}(y)$$
, $\forall y \in Y$ if and only if $y = f(x)$, $\forall x \in X$

Q.1 The real valued functions f and g are defined below. Find (a) fog (x) (b) gof (x) (c) fof (x) (d) gog (x)

(i)
$$f(x) = 2x + 1$$
; $g(x) = \frac{3}{x-1}$, $x \neq 1$

(ii)
$$f(x) = \sqrt{x+1}$$
; $g(x) = \frac{1}{x^2}$, $x \neq 0$
(iii) $f(x) = \frac{1}{\sqrt{x-1}}$; $x \neq 1$; $g(x) = (x^2+1)^2$
(iv) $f(x) = 3x^4 - 2x^2$; $g(x) = \frac{2}{\sqrt{x}}$, $x \neq 0$
Solution:
(i) $f(x) = 2x+1$; $g(x) = \frac{3}{x-1}$, $x \neq 1$
(a) $fog(x) = f(g(x))$
 $= f(\frac{3}{x-1})$
 $= 2(\frac{3}{x-1}) + 1$
 $= \frac{6}{x-1} + 1$
 $= \frac{6+x-1}{x-1}$
 $= \frac{x+5}{x-1}$ Ans.
(b) $gof(x) = g(f(x))$
 $= g(2x+1)$
 $= \frac{3}{2x+1-1} = \frac{3}{2x}$ Ans.
(c) $fof(x) = f(f(x))$
 $= f(2x+1)$
 $= 2(2x+1) + 1$
 $= 4x+2 + 1$
 $= 4x+3$ Ans.
(d) $gog(x) = g(g(x))$
 $= g(\frac{3}{x-1})$
 $= \frac{3}{\frac{3}{x-1}-1}$

$$= \frac{3}{\frac{3 - (x - 1)}{x - 1}}$$
$$= \frac{3(x - 1)}{3 - x + 1}$$
$$= \frac{3(x - 1)}{4 - x}$$
Ans.

(ii)
$$f(x) = \sqrt{x+1}$$
; $g(x) = \frac{1}{x^2}$, $x \neq 0$

(a)
$$fog(x) = f(g(x))$$

 $= f\left(\frac{1}{x^2}\right)$
 $= \sqrt{\frac{1}{x^2} + 1}$
 $= \sqrt{\frac{1 + x^2}{x^2}} = \frac{\sqrt{1 + x^2}}{x}$ Ans.
(b) $gof(x) = g(f(x))$
 $= g(\sqrt{x + 1})$
 $= \frac{1}{(\sqrt{x + 1})^2} = \frac{1}{x + 1}$ Ans.
(c) $fof(x) = f(f(x))$
 $= f(\sqrt{x + 1})$
 $= \sqrt{\sqrt{x + 1} + 1}$ Ans.
(d) $gog(x) = g(g(x))$
 $= g\left(\frac{1}{x^2}\right)$
 $= \frac{1}{(\frac{1}{x^2})^2} = \frac{1}{\frac{1}{x^4}} = x^4$ Ans.
(iii) $f(x) = \frac{1}{\sqrt{x - 1}}$; $x \neq 1$; $g(x) = (x^2 + 1)^2$

(a)
$$fog(x) = f(g(x))$$

= $f((x^2 + 1)^2)$
= $\frac{1}{\sqrt{(x^2 + 1)^2 - 1}}$

$$= \frac{1}{\sqrt{x^4 + 1 + 2x^2 - 1}}$$

$$= \frac{1}{\sqrt{x^2(x^2 + 2)}} = \frac{1}{x\sqrt{x^2 + 2}} \quad \text{Ans.}$$
(b) $\operatorname{gof}(x) = \operatorname{g}(f(x))$

$$= \operatorname{g}\left(\frac{1}{\sqrt{x - 1}}\right)^2 + 1 \int_{-1}^{2} \left(\frac{1 + x - 1}{x - 1}\right)^2$$

$$= \left(\frac{1}{x - 1} + 1\right)^2 = \left(\frac{1 + x - 1}{x - 1}\right)^2$$

$$= \left(\frac{x}{x - 1}\right)^2 \quad \text{Ans.}$$
(c) $\operatorname{fof}(x) = \operatorname{f}(f(x))$

$$= \operatorname{f}\left(\frac{1}{\sqrt{x - 1}}\right)$$

$$= \frac{1}{\sqrt{\sqrt{1 - \sqrt{x - 1}}}} \quad \sqrt{\sqrt{x - 1}} \quad \sqrt{\sqrt{x - 1}} \quad \sqrt{4x - 1} \quad \sqrt{4x - 1}$$
(d) $\operatorname{gog}(x) = \operatorname{g}(g(x))$

$$= \operatorname{g}((x^2 + 1)^2)$$

$$= \left[\left[(x^2 + 1)^2\right]^2 + 1\right]^2$$

$$= \left[(x^2 + 1)^4 + 1\right]^2 \quad \text{Ans.}$$
(iv) $\operatorname{f}(x) = 3x^4 - 2x^2 \quad ; \quad \operatorname{g}(x) = \frac{2}{\sqrt{x}} \quad , \quad x \neq 0$
(a) $\operatorname{fog}(x) = \operatorname{f}(g(x))$

$$= \operatorname{f}\left(\frac{2}{\sqrt{x}}\right)^4 - 2\left(\frac{2}{\sqrt{x}}\right)^2$$

$$= 3\left(\frac{16}{x^2}\right) - 2\left(\frac{4}{x}\right)$$

$$= \frac{48}{x^2} - \frac{8}{x}$$

$$= \frac{48 - 8x}{x^2}$$

$$= \frac{8(6 - x)}{x^2} \quad \text{Ans.}$$

(b) $\text{gof}(x) = g(f(x))$

$$= g(3x^4 - 2x^2)$$

$$= \frac{2}{\sqrt{3x^4 - 2x^2}}$$

$$= \frac{2}{\sqrt{x^2(3x^2 - 2)}} = \frac{2}{x\sqrt{3x^2 - 2}} \quad \text{Ans.}$$

(c) $\text{fof}(x) = f(f(x))$

$$= f(3x^4 - 2x^2)$$

$$= 3(3x^4 - 2x^2)^4 - 2(3x^4 - 2x^2)^2 \quad \text{Ans.}$$

(d) $\text{gog}(x) = g(g(x))$

$$= g\left(\frac{2}{\sqrt{x}}\right)$$

$$= \frac{2}{\sqrt{2/\sqrt{x}}} \quad \text{TALEEMCITY.COM}$$

$$= 2\sqrt{\frac{\sqrt{x}}{2}}$$

$$= \sqrt{2}\sqrt{x} \quad \text{Ans.}$$

Q.2 For the real valued function, f defined below, find:

(a)
$$f^{-1}(x)$$

(b)
$$f^{-1}(-1)$$
 and verify $f(f^{-1}(x)) = f^{-1}(f(x)) = x$
(i) $f(x) = -2x + 8$ (Lahore Board 2007,2009) (ii) $f(x) = 3x^3 + 7$
(iii) $f(x) = (-x + 9)^3$ (iv) $f(x) = \frac{2x + 1}{x - 1}$, $x > 1$

Solution:

(i) $\mathbf{f}(\mathbf{x}) = -2\mathbf{x} + \mathbf{8}$ Since y = f(x)(a) $\Rightarrow x = f^{-1}(y)$ Now, f(x) = -2x + 8y = -2x + 82x = 8 - y $x = \frac{8-y}{2}$ $f^{-1}(y) = \frac{8-y}{2}$ Replacing y by x $f^{-1}(x) = \frac{8-x}{2}$ Replacing y by x. $f^{-1}(x) = \frac{8-x}{2}$ Put. x = -1(b) $f^{-1}(-1) = \frac{8 - (-1)}{2} = \frac{8 + 1}{2} =$ $f(f^{-1}(x)) = f\left(\frac{8-x}{2}\right)$ $= -2\left(\frac{8-x}{2}\right) + 8$ = -8 + x + 8= x $f^{-1}(f(x)) = f^{-1}(-2x+8)$ $=\frac{8-(-2x+8)}{2}$ $= \frac{8+2x-8}{2}$ $=\frac{2x}{2}$ = x $f(f^{-1}(x)) = f^{-1}(f(x)) = x$ Hence proved.

(ii)	f(x)	=	$3x^3 + 7$
(a)	Since	у	= f(x)
	=>	Х	$= f^{-1}(y)$
	Now		
	f(x)	=	$3x^{3} + 7$
	У	=	$3x^{3} + 7$
	$3x^3$	=	y-7
	x ³	=	$\frac{y-7}{3}$
	x	=	$\left(\frac{y-7}{3}\right)^{\frac{1}{3}}$
	f ⁻¹ (y)	=	$\left(\frac{y-7}{3}\right)^{\frac{1}{3}}$

Replacing y by x

$$f^{-1}(x) = \left(\frac{x-7}{3}\right)^{\frac{1}{3}}$$

(b) Put $x = -1$
 $f^{-1}(-1) = \left(\frac{-1-7}{3}\right)^{\frac{1}{3}}$
 $= \left(\frac{-8}{3}\right)^{\frac{1}{3}}$
TALEEMCITY.COM
f $(f^{-1}(x)) = f\left[\left(\frac{x-7}{3}\right)^{\frac{1}{3}}\right]$
 $= 3\left[\left(\frac{x-7}{3}\right)^{\frac{1}{3}}\right]^{\frac{1}{3}} + 7$
 $= 3\left(\frac{x-7}{3}\right) + 7$
 $= x-7+7 = x$
 $f^{-1}(f(x)) = f^{-1}(3x^{3}+7)$
 $= \left(\frac{3x^{3}+7-7}{3}\right)^{\frac{1}{3}}$

$$= \left(\frac{3x^{3}}{3}\right)^{\frac{1}{3}}$$

$$= (x^{3})^{\frac{1}{3}} = x$$

f $(f^{-1}(x)) = f^{-1}(f(x)) = x$ Hence proved.
(iii) f(x) = $(-x + 9)^{3}$
(a) Since $y = f(x)$
 $x = f^{-1}(y)$
Now
f(x) = $(-x + 9)^{3}$
 $y^{\frac{1}{3}} = -x + 9$
 $x = 9 - y^{\frac{1}{3}}$
Replacing y by x
 $f^{-1}(x) = 9 - x^{\frac{1}{3}}$
(b) Put $x = -1$
 $f^{-1}(-1) = 9 - (-1)^{\frac{1}{3}}$
TALEEMCITY.COM
f $(f^{-1}(x)) = f(9 - x^{\frac{1}{3}})$
 $= [-(9 - x^{\frac{1}{3}}) + 9]^{3}$
 $= (-9 + x^{\frac{1}{3}} + 9)^{3}$
 $= (-9 + x^{\frac{1}{3}} + 9)^{3}$
 $= (x^{\frac{1}{3}})^{\frac{3}{3}} = x$
f $f^{-1}(f(x)) = f^{-1}((-x + 9)^{3})$
 $= 9 - [(-x + 9)^{3}]^{\frac{1}{3}}$
 $= 9 - (-x + 9)$
 $= 9 + x - 9$
 $= x$
f $(f^{-1}(x)) = f^{-1}(f(x)) = x$ Hence proved.

(iv)	f (x)	$=\frac{2x+1}{x-1} , x>1$
(a)	Since y	= f(x)
	•	$= f^{-1}(y)$
Now		
	f(x) =	
	y =	$\frac{2x+1}{x-1}$
	y(x – 1)	= 2x + 1
		= 2x + 1
	yx - 2x	-
	x(y-2)	•
	Х	$= \frac{\mathbf{y}+1}{\mathbf{y}-2}$
	f ⁻¹ (y)	$=\frac{y+1}{y-2}$
Replac	cing y by x	
	$f^{-1}(x)$	$=\frac{x+1}{x-2}$
(b)	Put x	= -1
	f ⁻¹ (-1)	$= \frac{-1+1}{-1-2} \textbf{TALEEMCITY.CO} $
		$= \frac{0}{-3} = 0$
f (f ⁻¹	(x))	$= f\left(\frac{x+1}{x-2}\right)$
		$= \frac{2\left(\frac{x+1}{x-2}\right)+1}{\frac{x+1}{x-2}-1}$
		$=\frac{\frac{2(x+1)+(x-2)}{x-2}}{\frac{x+1-(x-2)}{x-2}}$

 f^{-1}

$$= \frac{2x + 2 + x - 2}{x + 1 - x + 2}$$

$$= \frac{3x}{3} = x$$

(f (x)) = f^{-1} $\left(\frac{2x + 1}{x - 1}\right)$

$$= \frac{\frac{2x + 1}{x - 1} + 1}{\frac{2x + 1}{x - 1} - 2}$$

$$= \frac{\frac{2x + 1 + x - 1}{x - 1}}{\frac{2x + 1 - 2}{x - 1}}$$

$$= \frac{3x}{2x + 1 - 2x + 2}$$

$$= \frac{3x}{3} = x$$

Hance proved

 $f(f^{-1}(x)) = f^{-1}(f(x)) = x$ Hence proved.

Q.3 Without finding the inverse, state the domain and range of f^{-1} .

(i)
$$f(x) = \sqrt{x+2}$$

(ii) $f(x) = \frac{x-1}{x-4}, x \neq 4$
(iii) $f(x) = \frac{1}{x+3}, x \neq -3$ (iv) $f(x) = (x-5)^2, x \ge 5$

Solution:

(i)
$$\mathbf{f}(\mathbf{x}) = \sqrt{\mathbf{x} + 2}$$

Domain of $\mathbf{f}(\mathbf{x}) = [-2, +\infty)$
Range of $\mathbf{f}(\mathbf{x}) = [0, +\infty)$
Domain of $\mathbf{f}^{-1}(\mathbf{x}) = \text{Range of } \mathbf{f}(\mathbf{x}) = [0, +\infty)$
Range of $\mathbf{f}^{-1}(\mathbf{x}) = \text{Domain of } \mathbf{f}(\mathbf{x}) = [-2, +\infty)$
(ii) $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x} - \mathbf{1}}{\mathbf{x} - \mathbf{4}}, \mathbf{x} \neq \mathbf{4}$
Domain of $\mathbf{f}(\mathbf{x}) = \mathbf{R} - \{4\}$
Range of $\mathbf{f}(\mathbf{x}) = \mathbf{R} - \{1\}$
Domain of $\mathbf{f}^{-1}(\mathbf{x}) = \text{Range of } \mathbf{f}(\mathbf{x}) = \mathbf{R} - \{1\}$
Range of $\mathbf{f}^{-1}(\mathbf{x}) = \text{Domain of } \mathbf{f}(\mathbf{x}) = \mathbf{R} - \{1\}$

 $f(x) = \frac{1}{x+3}, x \neq -3$ (iii) Domain of $f(x) = R - \{-3\}$ Range of $f(x) = R - \{0\}$ Domain of $f^{-1}(x) = Range of f(x) = R - \{0\}$ Range of $f^{-1}(x)$ = Domain of $f(x) = R - \{-3\}$ $f(x) = (x-5)^2, x \ge 5$ (Gujranwala Board 2007) (iv) Domain of f(x) $= [5, +\infty)$ $= [0, +\infty)$ Range of f(x)Domain of $f^{-1}(x)$ = Range of f(x) = $[0, +\infty)$ Range of $f^{-1}(x)$ = Domain of $f(x) = [5, +\infty)$

Limit of a Function:

Let a function f(x) be defined in an open interval near the number 'a' (need not at a) if, as x approaches 'a' from both left and right side of 'a', f(x) approaches a specific number 'L' then 'L', is called the limit of f(x) as x approaches a symbolically it is written as.

 $\lim_{x \to a} f(x) = L \text{ read as "Limit of } f(x) \text{ as } x \to a, \text{ is } L"$

Theorems on Limits of Functions:

Let f and g be two functions, for which $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, then

Theorem 1: The limit of the sum of two functions is equal to the sum of their limits.

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
$$= L + M$$

Theorem 2: The limit of the difference of two functions is equal to the difference of their limits.

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$
$$= L - M$$

Theorem 3: If K is any real numbers, then.

 $\lim_{x \to a} [kf(x)] = K \lim_{x \to a} f(x) = kL$

Theorem 4: The limit of the product of the functions is equal to the product of their limits.

$$\lim_{x \to a} [f(x) \cdot g(x)] = [\lim_{x \to a} f(x)] [\lim_{x \to a} g(x)] = LM$$

Theorem 5: The limit of the quotient of the functions is equal to the quotient of their limits provided the limit of the denominator is non-zero.

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M} \quad , \quad g(x) \neq 0, \ M \neq 0$$

Theorem 6: Limit of $[f(x)]^n$, where n is an integer. $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n = L^n$

The Sandwitch Theorem:

Let f, g and h be functions such that $f(x) \le g(x) \le h(x)$ for all number x in some open interval containing "C", except possibly at C itself.

If,
$$\lim_{x\to c} f(x) = L$$
 and $\lim_{x\to c} h(x) = L$, then $\lim_{x\to c} g(x) = L$

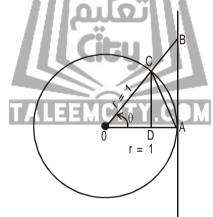
Prove that

If θ is measured in radian, then

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Proof:

Take θ a positive acute central angle of a circle with radius r = 1. OAB represents the sector of the circle.



|OA| = |OC| = 1 (radii of unit circle) From right angle $\triangle ODC$

$$\sin\theta = \frac{|DC|}{|OC|} = |DC|$$
 (: $|OC| = 1$)

From right angle $\triangle OAB$

$$\operatorname{Tan}\theta = \frac{|AB|}{|OA|} = AB \qquad (\therefore |OA| = 1)$$

In terms of θ , the areas are expressed as

Area of
$$\triangle OAC = \frac{1}{2} |OA| |CD| = \frac{1}{2} (1) \sin \theta = \frac{1}{2} \sin \theta$$

Area of sector OAC = $\frac{1}{2} r^2 \theta = \frac{1}{2} (1)(\theta) = \frac{1}{2} \theta$ Area of $\triangle OAB = \frac{1}{2} |OA| |AB| = \frac{1}{2} (1) \tan \theta = \frac{1}{2} \tan \theta$ From figure Area of $\triangle OAB >$ Area of sector OAC > Area of $\triangle OAC$ $\frac{1}{2}\tan\theta > \frac{1}{2}\theta > \frac{1}{2}\sin\theta$ $\frac{1}{2} \frac{\sin\theta}{\cos\theta} > \frac{\theta}{2} > \frac{\sin\theta}{2}$ As $\sin\theta$ is positive, so on division by $\frac{1}{2}\sin\theta$, we get. $\frac{1}{\cos\theta} > \frac{\theta}{\sin\theta} > 1$ (0 < θ < $\pi/2$) i.e. $\cos\theta < \frac{\sin\theta}{\theta} < 1$ When, $\theta \to 0$, $\cos\theta \to 1$ Since $\frac{\sin\theta}{\Theta}$ is sandwitched between 1 and a quantity approaching 1 itself. So by the sandwitch theorem it must also approach 1. i.e. $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$

Theorem: Prove that

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$

Proof:

Taking

$$\left(1 + \frac{1}{n}\right)^{n} = 1 + n\left(\frac{1}{n}\right) + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!} \left(\frac{1}{n}\right)^{3} + \dots$$

= 1 + 1 + $\frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots$

Taking $\lim_{n \to +\infty}$ on both sides.

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots \\ = 1 + 1 + 0.5 + 0.166667 + 0.0416667 + \dots$$

= 2.718281 As approximate value of e is = 2.718281 $\therefore \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)$ **Deduction:** $\lim_{x \to 0} (1+x)^{1/x} = e$ We know that. $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$ Put $x = \frac{1}{n}$ then $\frac{1}{x} = n$ As $n \to +\infty$, $x \to 0$ $\therefore \lim_{n \to +\infty} (1+x)^{1/x} = e$ **Theorem:** Prove that: $\lim_{x \to a} \frac{a^x - 1}{x} = \log_e a$ **Proof:** Taking, $\lim_{x \to a} \frac{a^x - 1}{x}$ $a^{x} - 1 = y$ Let $a^{x} = 1 + y$ $x = \log_a (1 + y)$ As, $x \rightarrow a$, $y \rightarrow 0$ $\lim_{x \to a} \frac{a^x - 1}{x} = \lim_{y \to 0} \frac{y}{\log_a(1 + y)}$ $= \lim_{y \to 0} \frac{1}{\frac{1}{y \log_{a}(1+y)}} = \lim_{y \to 0} \frac{1}{\log_{a}(1+y)^{y}}$ $=\frac{1}{\log_a e}$ $\therefore \lim_{y \to 0} (1+y)^{1/y} = e$ $= \log_{e} a$

Deduction

$$\lim_{x \to 0} \quad \left(\frac{e^{x}-1}{x}\right) = \log_{e}e = 1$$

We know that

$$\lim_{x \to 0} \left(\frac{a^{x}-1}{x}\right) = \log_{e} a$$
$$a = e$$

Put

$$\lim_{x \to 0} \left(\frac{e^{x} - 1}{x} \right) = \log_{e} e = 1$$

Important results to remember

- (i) $\lim_{x \to +\infty} (e^x) = \infty$ (ii) $\lim_{x \to -\infty} (e^x) = \lim_{x \to -\infty} \left(\frac{1}{e^{-x}}\right) = 0$
- (iii) $\lim_{x \to \pm \infty} \left(\frac{a}{x}\right) = 0$, where a is any real number.

(i)
$$\lim_{x \to 3} (2x + 4)$$
 (ii) $\lim_{x \to 1} (3x^2 - 2x + 4)$
(iii) $\lim_{x \to 3} \sqrt{x^2 + x + 4}$ (iv) $\lim_{x \to 2} x\sqrt{x^2 - 4}$
(v) $\lim_{x \to 2} (\sqrt{x^3 + 1} - \sqrt{x^2 + 5})$ (iv) $\lim_{x \to 2} \frac{2x^3 + 5x}{3x - 2}$

Solution:

(i)
$$\lim_{x \to 3} (2x + 4) = \lim_{x \to 3} (2x) + \lim_{x \to 3} (4)$$

 $= 2 \lim_{x \to 3} x + 4$
 $= 2(3) + 4 = 6 + 4 = 10$ Ans.
(ii) $\lim_{x \to 1} (3x^2 - 2x + 4) = \lim_{x \to 1} (3x^2) - \lim_{x \to 1} (2x) + \lim_{x \to 1} (4)$
 $= 3 \lim_{x \to 1} x^2 - 2 \lim_{x \to 1} x + 4$
 $= 3(1)^2 - 2(1) + 4$
 $= 3 - 2 + 4$
 $= 5$ Ans.
(iii) $\lim_{x \to 3} \sqrt{x^2 + x + 4} = [\lim_{x \to 3} (x^2 + x + 4)]^{1/2}$