(xi) $\operatorname{Lim}_{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}+1}, x>0 \quad\left(\frac{\infty}{\infty}\right)$
$\operatorname{Lim}_{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}+1}=\operatorname{Lim}_{x \rightarrow 0} \frac{e^{1 / x}\left(1-\frac{1}{e^{1 / x}}\right)}{e^{1 / x}\left(1+\frac{1}{e^{1 / x}}\right)}$
$=\operatorname{Lim}_{\mathrm{x} \rightarrow 0} \frac{1-\frac{1}{\mathrm{e}^{1 / \mathrm{x}}}}{1+\frac{1}{\mathrm{e}^{1 / \mathrm{x}}}}$
$=\frac{1-\frac{1}{\mathrm{e}^{\infty}}}{1+\frac{1}{\mathrm{e}^{\infty}}}$ $=\frac{1-\frac{1}{\infty}}{1+\frac{1}{\infty}}=\frac{1-0}{1+0}=1$
Function

Continuous Function

A function f is said to be continuous at a number " c " if and only if the following three conditions are satisfied.
(i) $\quad f(\mathrm{c})$ is defined. $\mathrm{AW}=\mathrm{HCOH} 00 \mathrm{M}$
(ii) $\operatorname{Lim}_{\mathrm{x} \rightarrow \mathrm{c}} f(\mathrm{x})$ exists.
(iii) $\operatorname{Lim}_{\mathrm{x} \rightarrow \mathrm{c}} f(\mathrm{x})=f(\mathrm{c})$

EXERCISE 1.4

Q. 1 Determine the left hand limit and right hand limit and then find limits of the following functions at $x=c$.
(i) $\quad f(x)=2 x^{2}+x-5, \quad c=1$
(ii) $f(x)=\frac{x^{2}-9}{x-3} \quad, \quad c=-3$
(iii) $f(x)=|x-5| \quad, \quad \mathbf{c}=5$

Solution:

(i) $f(x)=2 x^{2}+x-5, \quad \mathbf{c}=1$

Left hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 1^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 1^{-}}\left(2 x^{2}+x-5\right) \\
& =2(1)^{2}+1-5 \\
& =2-4=-2 \quad \text { Ans. }
\end{aligned}
$$

Right hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 1^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 1^{+}}\left(2 x^{2}+x-5\right) \\
& =2(1)^{2}+1-5 \\
& =2+1-5 \\
& =-2 \quad \text { Ans. }
\end{aligned}
$$

(ii) $f(x)=\frac{x^{2}-9}{x-3} \quad, \quad \mathbf{c}=-3$

Left hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow-3^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow-3^{-}} \frac{x^{2}-9}{x-3} \\
& =\operatorname{Lim}_{x \rightarrow-3^{-}} \frac{(x+3)(x-3)}{x-3} \\
& =\operatorname{Lim}_{x \rightarrow-3^{-}}(x+3) \\
& =-3+3=0 \quad \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow-3^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow-3^{+}} \frac{x^{2}-9}{x-3} \\
& =\operatorname{Lim}_{x \rightarrow-3^{+}} \frac{(x+3)(x-3)}{x-3} \\
& =\operatorname{Lim}_{x \rightarrow-3^{+}}(x+3) \\
& =-3+3=0 \quad \text { Ans. }
\end{aligned}
$$

(iii) $\quad \mathbf{f}(\mathbf{x})=|\mathbf{x}-5|, \quad \mathbf{c}=5$

Left hand limit

$$
\begin{aligned}
\operatorname{Limf}_{x \rightarrow 5^{-}}(x) & =\operatorname{Lim}_{x \rightarrow 5^{-}}|x-5| \\
& =\operatorname{Lim}_{x \rightarrow 5^{-}}-(x-5) \\
& =-(5-5)=0 \quad \text { Ans. }
\end{aligned}
$$

Right hand limit

$$
\begin{aligned}
\operatorname{Limf}_{x \rightarrow 5^{+}}(x) & =\operatorname{Lim}_{x \rightarrow 5^{+}}|x-5| \\
& =\operatorname{Lim}_{x \rightarrow 5^{+}}(x-5) \\
& =5-5 \\
& =0 \quad \text { Ans. }
\end{aligned}
$$

Q. 2 Discuss the continuity of $f(x)$ at $x=c$:
(i) $\mathbf{f}(\mathbf{x})=$
, $\mathbf{c}=2$
(G.B 2007, L.B 2008)
(ii) $f(x)=\left\{\begin{array}{cl}3 x-1 & \text { if } x<1 \\ 4 & \text { if } x=1 \\ 2 x & \text { if } x>1\end{array}, \quad \mathbf{c}=1\right.$
(L.B 2009, L.B 2006)
(L.B 2009, G.B 2007)

Solution:
(i) $\quad f(x)=\left\{\begin{array}{lll}2 x+5 & \text { if } & x \leq 2 \\ 4 x+1 & \text { if } & x>2\end{array}, \quad \mathbf{c}=2\right.$
$\begin{aligned} \mathrm{f}(2) \mathrm{F} & =2(2)+5 \\ & =4+5 \\ & =9 \\ \text { Left hand } & \operatorname{limit} \\ & \operatorname{Lim}_{\mathrm{x} \rightarrow 2^{-}} \mathrm{f}(\mathrm{x})=\operatorname{Lim}_{\mathrm{x} \rightarrow 2^{-}}(2 \mathrm{x}+5)\end{aligned}$
$=2(2)+5-50 \square 100$
$=4+5=9$
Right hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 2^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 2^{+}}(4 x+1) \\
& =4(2)+1 \\
& =8+1 \\
& =9
\end{aligned}
$$

$\therefore \quad$ Left hand limit= Right hand limit
So $\quad \operatorname{Lim}_{x \rightarrow 2} f(x)$ exists
$\therefore \quad \mathrm{f}(2)=\operatorname{Lim}_{\mathrm{x} \rightarrow 2} \mathrm{f}(\mathrm{x})=9$
So the function is continuous at $\mathrm{x}=2$.
(ii) $f(x)=\left\{\begin{array}{cl}3 x-1 & \text { if } x<1 \\ 4 & \text { if } \\ 2 x & \text { if } x>1\end{array}, \quad c=1 \quad\right.$ (L.B 2006, 2007)
$\mathrm{f}(1)=4$
Left hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 1^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 1^{-}}(3 x-1) \\
& =3(1)-1 \\
& =3-1 \\
& =2
\end{aligned}
$$

Right hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 1^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 1^{+}}(2 x) \\
& =2(1)=2
\end{aligned}
$$

$\therefore \quad$ Left hand limit $=$ Right hand limit
So $\operatorname{Lim}_{\mathrm{x} \rightarrow 1} \mathrm{f}(\mathrm{x})$ exists
$\therefore \quad f(1) \neq \operatorname{Lim}_{x \rightarrow 1} f(x)$
So the function is discontinuous at $\mathrm{x}=1$.
Q. 3 If $f(x)=\left\{\begin{array}{ll}3 x & \text { if } x \leq-2 \\ x^{2}-1 & \text { if }-2<x<2 \\ 3 & \text { if } x \geq 2\end{array}\right.$ (L.B 2011)

Discuss continuity at $x=2$ and $x=-2$.

Solution:

At

$$
\begin{aligned}
\mathrm{x} & =2 \\
\mathrm{f}(2) & =3
\end{aligned}
$$

Left hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 2^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 2^{-}}\left(x^{2}-1\right) \\
& =2^{2}-1=4-1=3
\end{aligned}
$$

Right hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 2^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 2^{+}} 3 \\
& =3
\end{aligned}
$$

$\therefore \quad$ Left hand limit $=$ Right hand limit
So, $\quad \operatorname{Lim}_{x \rightarrow 2} f(x)$ exists
$\therefore \quad \mathrm{f}(2)=\operatorname{Lim}_{\mathrm{x} \rightarrow 2} \mathrm{f}(\mathrm{x})=3$
So the function is continuous at $\mathrm{x}=2$.
At $\mathrm{x}=-2$
$f(-2)=3(-2)=-6$
Left hand limit.

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow-2^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow-2^{-}}(3 x) \\
& =3(-2)=-6
\end{aligned}
$$

Right hand limit.

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow-2^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow-2^{+}}\left(x^{2}-1\right) \\
& =(-2)^{2}-1 \\
& =4-1 \\
& =3
\end{aligned}
$$

$\therefore \quad$ Left hand limit $\quad \neq$ Right hand limit
So, $\quad \operatorname{Lim}_{x \rightarrow-2} f(x)$ does not exists.
$\therefore \quad \mathrm{f}(-2) \neq \operatorname{Lim}_{\mathrm{x} \rightarrow-2} \mathrm{f}(\mathrm{x})$
So the function is discontinuous at $\mathrm{x}=-2$.
Q. 4 If $f(x)=\left\{\begin{array}{ll}x+2, & x \leq-1 \\ c+2, & x>-1\end{array}\right.$ find c ' so that $\operatorname{Lim}_{x \rightarrow-1} f(x)$ exists.
(L.B 2009 Supply)

Solution:
Left hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow-1^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow-1^{-}}(x+2) \\
& =-1+2=1
\end{aligned}
$$

Right hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow-1^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow-1^{+}}(c+2) \\
& =c+2
\end{aligned}
$$

Since $\operatorname{Lim}_{x \rightarrow-1} f(x)$ exists.
$\therefore \quad$ Left hand limit $=$ Right hand limit

$$
\begin{aligned}
& 1=c+2 \\
& c=1-2
\end{aligned}
$$

$$
\mathrm{c}=-1 \quad \text { Ans. }
$$

Q. 5 Find the values m and n, So that given function f is continuous at $x=3$:
(i) $\quad f(x)=\left\{\begin{array}{ccc}m x & \text { if } & x<3 \\ n & \text { if } & x=3 \\ -2 x+9 & \text { if } & x>3\end{array}\right.$ (ii) $\quad f(x)=\left\{\begin{array}{ccc}m x & \text { if } & x<3 \\ x^{2} & \text { if } & x \geq 3\end{array}\right.$

Solution:

(i) $\begin{array}{rll}f(x) & =\left\{\begin{array}{cll}m x & \text { if } x<3 \\ n & \text { if } x=3 \\ -2 x+9 & \text { if } x>3\end{array}\right. & (\text { (L. } \boldsymbol{B} 2004,2005) \\ & \text { (G.B 2006, 2009) }\end{array}$

Left hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 3^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 3^{-}}(m x) \\
& =3 m
\end{aligned}
$$

Right hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 3^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 3^{+}}(-2 x+9) \\
& =-2(3)+9 \\
& =-6+9 \\
& =3
\end{aligned}
$$

Since $f(x)$ is continuous at $x=3$
$\therefore \quad$ Left hand limit $=$ Right hand limit $=\mathrm{f}(3)$
$3 \mathrm{~m}=3=\mathrm{n}$

$\mathrm{m}=\frac{3}{3} \quad \mathrm{n}=3$
$\mathrm{m}=1$
$\therefore \mathrm{m}=1, \mathrm{n}=3$ Ans.
(ii) $f(x)=\left\{\begin{array}{lll}m x & \text { if } & x<3 \\ x^{2} & \text { if } & x \geq 3\end{array} \quad\right.$ (L.B 2007)
$f(3)=(3)^{2}=9$
Left hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 3^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 3^{-}}(m x) \\
& =3 \mathrm{~m}
\end{aligned}
$$

Right hand limit

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 3^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 3^{+}}\left(x^{2}\right) \\
& =3^{2}=9
\end{aligned}
$$

Since $f(x)$ is continuous at $x=3$
$\therefore \quad$ Left hand limit $=$ Right hand limit $=\mathrm{f}(3)$

$$
3 \mathrm{~m}=9=9
$$

$$
3 \mathrm{~m}=9
$$

$$
\mathrm{m}=\frac{9}{3}=3 \quad \text { Ans. }
$$

Q.6: If $f(x)= \begin{cases}\frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2} & , x \neq 2 \\ k & , x=2\end{cases}$
(G.B 2004)
(L.B 2009 (s) 2004)

Find value of k so that f is continuous at $x=2$.
(G.B 2006)
(L.B 2008)

Solution:
(G.B 2008)

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 2} & =f(x)=\operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2}\left(\frac{0}{0}\right) \text { form } \\
& =\operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2} \times \frac{\sqrt{2 x+5}+\sqrt{x+7}}{\sqrt{2 x+5}+\sqrt{x+7}} \\
& =\operatorname{Lim}_{x \rightarrow 2} \frac{(\sqrt{2 x+5})^{2}-(\sqrt{x+7})^{2}}{(x-2)(\sqrt{2 x+5}+\sqrt{x+7})} \\
& =\operatorname{Lim}_{x \rightarrow 2} \frac{(2 x+5)-(x+7)}{(x-2)(\sqrt{2 x+5}+\sqrt{x+7})} \\
& =\operatorname{Lim}_{x \rightarrow 2} \frac{x-2-2)(\sqrt{2 x+5}+\sqrt{x+7})}{(x-2} \\
& =\operatorname{Lim}_{x \rightarrow 2} \frac{1}{\sqrt{2 x+5}+\sqrt{x+7}} \\
& =\frac{1}{\sqrt{2(2)+5}+\sqrt{2+7}} \\
& =\frac{1}{\sqrt{4+5}+\sqrt{9}} \\
& =\frac{1}{3+3}=\frac{1}{6}
\end{aligned}
$$

Since $f(x)$ is continuous at $x=2$

$$
\begin{aligned}
\therefore \quad \mathrm{f}(2) & =\operatorname{Lim}_{\mathrm{x} \rightarrow 2} \mathrm{f}(\mathrm{x}) \\
& \mathrm{k}=\frac{1}{6} \quad \text { Ans. }
\end{aligned}
$$

