EXERCISE 2.10

Q.1: Find two positive integers whose sum is 30 and their product will be maximum.

Solution:

$$
\begin{aligned}
& \text { Let } 1^{\text {st }} \text { positive integer }=\mathrm{x} \\
& 2^{\text {nd }} \text { positive integer }=30-\mathrm{x}
\end{aligned}
$$

According to the condition

$$
\begin{aligned}
& \text { Product }=P=x(30-x) \\
& P=30 x-x^{2} \\
& \frac{\mathrm{dP}}{\mathrm{dx}}=30-2 \mathrm{x}
\end{aligned}
$$

For stationary points
Put

$$
\begin{aligned}
& \frac{\mathrm{dP}}{\mathrm{dx}}=0 \\
& 30-2 \mathrm{x}=0 \\
& 30=2 \mathrm{x} \\
& \mathrm{x}=\frac{30}{2}=15 \\
& \text { Put } \quad \begin{aligned}
\mathrm{x} & =15 \quad \text { in } \frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{dx}^{2}} \text {, we get } \\
\frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{dx}^{2}}= & -2<0
\end{aligned}, \begin{aligned}
\end{aligned} \\
&
\end{aligned}
$$

$\therefore \quad$ Product is maximum at $\mathrm{x}=15$
$1^{\text {st }}$ positive integer $=\mathrm{x}=15$
$2^{\text {nd }}$ positive integer $=30-x$
$=30-15$
$=15 \quad$ Ans.
Q.2: Divide 20 into two parts so that the sum of their squares will be minimum.

Solution:

Let

$$
1^{\text {st }} \text { part }=x
$$

$$
2^{\text {nd }} \text { part }=20-x
$$

Sum of square $=S=x^{2}+(20-x)^{2}$

$$
S=x^{2}+400+x^{2}-40 x
$$

$$
S=2 x^{2}-40 x+400
$$

$$
\frac{\mathrm{dS}}{\mathrm{dx}}=4 \mathrm{x}-40
$$

$$
\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}=4
$$

For stationary points
Put

$$
\begin{aligned}
& \frac{\mathrm{dS}}{\mathrm{dx}}=0 \\
& 4 \mathrm{x}-40=0 \\
& 4 \mathrm{x}=40 \\
& \mathrm{x} \quad=\frac{40}{4}=10 \\
& \text { Put } \quad \begin{aligned}
\mathrm{x}=10 \quad & \text { in } \frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}, \text { we get } \\
& \\
\quad \begin{aligned}
\mathrm{d}^{2} \mathrm{~S} \\
\mathrm{dx}^{2}
\end{aligned}= & 4>0 \\
\text { Sum of squares is minimum at } \mathrm{x} & =10 \\
1^{\text {st }} \text { part } & =\mathrm{x}=10 \\
2^{\text {nd }} \text { part } & =20-\mathrm{x} \\
& =20-10 \\
& =10
\end{aligned} \quad \text { Ans. }
\end{aligned}
$$

Q.3: Find two positive integers whose sum is 12 and the product of one with the square of the other will be maximum.
(L.B 2009)

Solution:

Let
$1^{\text {st }}$ positive integer $=\mathrm{x}$
$2^{\text {nd }}$ positive integer $=12-\mathrm{x}$

According to the condition

$$
\begin{aligned}
\text { Product } & =\mathrm{P}=\mathrm{x}(12-\mathrm{x})^{2} \\
\mathrm{P} & =\mathrm{x}\left(144+\mathrm{x}^{2}-24 \mathrm{x}\right) \\
\mathrm{P} & =144 \mathrm{x}+\mathrm{x}^{3}-24 \mathrm{x}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d P}{d x}=144 x+3 x^{2}-48 x \\
& \frac{d^{2} P}{d x^{2}}=6 x-48
\end{aligned}
$$

For stationary points
Put $\frac{d P}{d x}=0$

$$
144+3 x^{2}-48 x=0
$$

$$
3\left(x^{2}-16 x+48\right)=0
$$

$$
x^{2}-16 x+48=0
$$

$$
x^{2}-12 x-4 x+48=0
$$

$$
x(x-12)-4(x-12)=0
$$

$$
(x-12)(x-4) \quad=0
$$

Either

$$
\begin{array}{lll}
x-12=0 & \text { or } & x-4=0 \\
x=12 & & x=4
\end{array}
$$

Put

$$
\begin{aligned}
x= & 12 \quad \text { in } \frac{d^{2} P}{d x^{2}}, \text { we gt } \\
\frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{dx}^{2}} & =6(12)-48 \\
& =72-48 \\
& =24>0
\end{aligned}
$$

This is not possible because product will be maximum.
Put $\quad x=4$ in $\frac{d^{2} P}{d^{2}}$, we get

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{dx}^{2}} & =6(4)-48 \\
& =24-48 \\
& =-24<0
\end{aligned}
$$

$\therefore \quad$ Product is maximum at $\mathrm{x}=4$

$$
1^{\text {st }} \text { positive integer }=\mathrm{x}=4
$$

$$
2^{\text {nd }} \text { positive integer }=12-\mathrm{x}
$$

$$
=12-4=8 \text { Ans. }
$$

Q.4: The perimeter of a triangle is $\mathbf{1 6}$ centimeters. If one side of length $\mathbf{6 c m}$, what are length of the other sides for maximum area of the triangle?

Solution:

Length of $1^{\text {st }}$ side of triangle $=6 \mathrm{~cm}$
Let

$$
\begin{aligned}
& \begin{aligned}
\text { Length of } 2^{\text {nd }} \text { side of triangle } & =\mathrm{x} \mathrm{~cm} \\
\text { Length of } 3^{\text {rd }} \text { side of triangle } & =16-(6+\mathrm{x}) \\
& =16-6-\mathrm{x} \\
& =(10-\mathrm{x}) \mathrm{cm}
\end{aligned} \\
& \\
& \mathrm{~S}=\frac{6+\mathrm{x}+10-\mathrm{x}}{2} \\
& \mathrm{~S}=\frac{16}{2}=8 \mathrm{~cm} \\
& \text { Area }=\mathrm{A}=\sqrt{\mathrm{S}(\mathrm{~S}-\mathrm{a})(\mathrm{S}-\mathrm{b})(\mathrm{S}-\mathrm{c})} \\
& \mathrm{A}=\sqrt{8(8-6)(8-\mathrm{x})(8-10+\mathrm{x})} \\
& \mathrm{A}=\sqrt{8(2)(8-\mathrm{x})(\mathrm{x}-2)} \\
& \mathrm{A}=\sqrt{16\left(8 \mathrm{x}-16-\mathrm{x}^{2}+2 \mathrm{x}\right)} \\
& \mathrm{A}=4 \sqrt{-\mathrm{x}^{2}+10-16} \\
& \frac{\mathrm{dA}}{\mathrm{dx}}=4 \cdot \frac{1}{2} \cdot\left(-\mathrm{x}^{2}+10 \mathrm{x}-16\right) \\
& \frac{\mathrm{dA}}{\mathrm{dx}}=\frac{2(-2 \mathrm{x}+10)}{\sqrt{-\mathrm{x}^{2}+10 \mathrm{x}-6}}
\end{aligned}
$$

For stationary points Put

$$
\begin{aligned}
\frac{\mathrm{dA}}{\mathrm{dx}} & =0 \\
\frac{2(-2 \mathrm{x}+10)}{\sqrt{-\mathrm{x}^{2}+10 \mathrm{x}-16}} & =0 \\
4(-\mathrm{x}+5) & =0 \\
-\mathrm{x}+5 & =0 \\
-\mathrm{x} & =-5 \\
\mathrm{x} & =5
\end{aligned}
$$

Before $x=5, \frac{d A}{d x}>0$
After $x=5, \frac{d A}{d x}<0$

$$
\begin{array}{ll}
\therefore & \text { Area is maximum at } \quad \mathrm{x}=5 \\
1^{\text {st }} \text { side of triangle }=6 \mathrm{~cm}
\end{array}
$$

$$
\begin{array}{ll}
2^{\text {nd }} \text { side of triangle } & =x \\
& =5 \mathrm{~cm} \\
3^{\text {rd }} \text { side of triangle } & =10-x=5 \mathrm{~cm} \quad \text { Ans. }
\end{array}
$$

Q.5: Find the dimensions of a rectangle of largest area having perimeter 120

 centimetres.
Solution:

Let

$$
\begin{align*}
\text { Length of rectangle } & =\mathrm{x} \mathrm{~cm} \\
\text { Width of rectangle } & =\mathrm{y} \mathrm{~cm} \\
\text { Perimeter } & =120 \mathrm{~cm} \\
2(\mathrm{x}+\mathrm{y}) & =120 \\
\mathrm{x}+\mathrm{y} & =\frac{120}{2} \\
\mathrm{x}+\mathrm{y} & =60 \\
\mathrm{y} & =60-\mathrm{x} \tag{1}\\
\text { Area }=\mathrm{A} & =\mathrm{xy} \\
\mathrm{~A} & =\mathrm{x}(60-\mathrm{x}) \\
\mathrm{A} & =60 \mathrm{x}-\mathrm{x}^{2} \\
\frac{\mathrm{dA}}{\mathrm{dx}} & =60-2 \mathrm{x} \\
\frac{\mathrm{~d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}} & =2
\end{align*}
$$

For Stationary points
Put

$$
\begin{aligned}
\frac{\mathrm{dA}}{\mathrm{dx}} & =0 \\
60-2 \mathrm{x} & =0 \\
-2 \mathrm{x} & =-60 \\
\mathrm{x} & =\frac{60}{2}=30
\end{aligned}
$$

Put $x=30$ in $\frac{d^{2} A}{{d x^{2}}^{2}}$, we get

$$
\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=-2<0
$$

$\therefore \quad$ Area is maximum at $\mathrm{x}=30$
Put

$$
x=30 \mathrm{~cm} \quad \text { in eq. (1) }
$$

$$
y=60-30=30 \mathrm{~cm}
$$

Length of rectangle $=x=30 \mathrm{~cm}$
Width of rectangle $=y=30 \mathrm{~cm}$
Dimensions of rectangle are $30 \mathrm{~cm}, 30 \mathrm{~cm}$
Q.6: Find the lengths of the sides of a variable rectangle having area $36 \mathbf{c m}^{2}$ when its perimeter is minimum.

Solution:

Let

> Length of rectangle $=\mathrm{x} \mathrm{cm}$
> Width of rectangle $=\mathrm{ycm}$
> Area $=\mathrm{A}=36 \mathrm{~cm}^{2}$
> $\mathrm{xy} \quad=36$
> $\mathrm{y} \quad=\frac{36}{\mathrm{x}} \ldots \ldots(1)$

Perimeter $=P=2(x+y)$

$$
\begin{aligned}
\mathrm{P} & =2\left(\mathrm{x}+\frac{36}{\mathrm{x}}\right) \\
\frac{\mathrm{dP}}{\mathrm{dx}} & =2\left(1-\frac{36}{\mathrm{x}^{2}}\right) \\
\frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{dx}^{2}} & =2\left(0+\frac{72}{\mathrm{x}^{3}}\right) \\
& =\frac{144}{\mathrm{x}^{3}}
\end{aligned}
$$

For stationary points
Put $\quad \frac{d P}{d x}=0$
$2\left(1-\frac{36}{x^{2}}\right)=0$
$1-\frac{36}{\mathrm{x}^{2}}=0$
$\frac{x^{2}-36}{x^{2}}=0$
$x^{2}-36=0$
$x^{2}=36$
$x=6$
Put $\quad x=6$ in $\frac{d^{2} P}{d x^{2}}$, we get

$$
\frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{dx}^{2}}=\frac{144}{(6)^{3}}=\frac{144}{216}>0
$$

$\therefore \quad$ Perimeter is minimum at $\mathrm{x}=6 \mathrm{~cm}$
Put $x=6 \mathrm{~cm}$ in eq. (1)

$$
y=\frac{36}{6}=6 \mathrm{~cm}
$$

Length of rectangle $=x=6 \mathrm{~cm}$
Width of rectangle $=y=6 \mathrm{~cm} \quad$ Ans.

Q.7: A box with a square base and open top is to have a volume of 4 cubic dm.

 Find the dimensions of the box which will require the least material.
Solution:

Let \quad Length of box $=x$
Width of box $=x$
Height of box $=y$
Volume $=4$ cubic dm
$\mathrm{x} \times \mathrm{x} \times \mathrm{y}=4$
$x^{2} y=4$
$y=\frac{4}{x^{2}}$
Surface area of box $=S=x^{2}+x y+x y+x y+x y$
$=x^{2}+4 x y$
$=\frac{x^{2}+4 x\left(\frac{4}{x^{2}}\right)}{1 / 46^{2}}=x^{2}+\frac{16}{x}$
$\frac{\mathrm{dS}}{\mathrm{dx}}=2 \mathrm{x}-\frac{16}{\mathrm{x}^{2}}$
$\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}=2+\frac{32}{\mathrm{x}^{3}}$
For stationery points

$$
\text { Put } \begin{aligned}
\frac{\mathrm{dS}}{\mathrm{dx}} & =0 \\
2 \mathrm{x}-\frac{16}{\mathrm{x}^{2}} & =0 \\
\frac{2 \mathrm{x}^{3}-16}{\mathrm{x}^{2}} & =0 \\
2 \mathrm{x}^{3}-16 & =0 \\
2 \mathrm{x}^{3} & =16
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}^{3}=8 \\
& \mathrm{x}=2
\end{aligned}
$$

Put $x=2$ in $\frac{d^{2} S}{d x^{2}}$, we get

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}} & =2+\frac{32}{(2)^{3}} \\
& =2+\frac{32}{8} \\
& =\quad 2+4 \\
& =12>0
\end{aligned}
$$

$\therefore \quad$ Surface area is minimum at $\mathrm{x}=2$
Put $\mathrm{x}=2$ in

$$
y=\frac{4}{x^{2}}=\frac{4}{(2)^{2}}=\frac{4}{4}=1
$$

Length of box $=x=2 d m$
Width of box $=x=2 \mathrm{dm}$
Height of box $=y=1 \mathrm{dm}$
Q.8: Find the dimensions of a rectangular garden having perimeter 80 metres if its area is to be maximum.

Solution:

Let Length of rectangular garden $=4 \times 8 \times 0$.
 Width of rectangular garden $=\mathrm{y} \mathrm{m}$

$$
\begin{align*}
\text { Perimeter } & =80 \mathrm{~m} \\
2(\mathrm{x}+\mathrm{y}) & =\frac{80}{2} \\
\text { Area }= & =40-\mathrm{x} \tag{1}\\
\mathrm{y} & =\mathrm{xy} \\
\mathrm{~A} & =\mathrm{x}(40-\mathrm{x}) \\
\mathrm{A} & =40 \mathrm{x}-\mathrm{x}^{2} \\
\frac{\mathrm{dA}}{\mathrm{dx}} & =40-2 \mathrm{x} \\
\frac{\mathrm{~d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}} & =-2
\end{align*}
$$

For stationary points
Put $\frac{\mathrm{dA}}{\mathrm{dx}}=0$

$$
\begin{aligned}
40-2 \mathrm{x} & =0 \\
-2 \mathrm{x} & =-40 \\
\mathrm{x} & =\frac{-40}{-2}=20
\end{aligned}
$$

Put $x=20 \quad$ in $\frac{d^{2} A}{d x^{2}}$, we get

$$
\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=-2<0
$$

$\therefore \quad$ Area is maximum at $\mathrm{x}=20$
Put $x=20$ in eq. (1)

$$
\begin{aligned}
& y=40-x \\
& y=40-20=20
\end{aligned}
$$

$\therefore \quad$ Length of rectangular garden $=\mathrm{x}=20 \mathrm{~m}$
Width of rectangular garden $=y=20 \mathrm{~m}$
So the dimensions of the rectangular garden are $20 \mathrm{~m}, 20 \mathrm{~m}$.
Q.9: An open tank of square base of side x and vertical sides is to be constructed to contain of given quantity of water. Find the depth in terms of x if the expense of lining the inside of the tank with will be least.

Solution:

Let
Length of tank $=x$
Width of tank $=x$
Height of tank $=y$
Let ' q ' be the quantity of water in the tank.
Volume $=\mathrm{V}=\mathrm{q}$
$\mathrm{x} \times \mathrm{x} \times \mathrm{y}=\mathrm{q}$
$y=\frac{q}{x^{2}}$
Total surface area $=S=x^{2}+x y+x y+x y+x y$

$$
S=x^{2}+4 x y
$$

$$
\begin{aligned}
& S=x^{2}+4 x\left(\frac{q}{x^{2}}\right) \\
& S=x^{2}+\frac{4 q}{x^{2}} \\
& \frac{d S}{d x}=2 x-\frac{4 q}{x^{2}} \\
& \frac{d^{2} S}{d x^{2}}=2 x+\frac{8 q}{x^{3}}
\end{aligned}
$$

For stationary points

$$
\text { Put } \begin{aligned}
\frac{d S}{d x} & =0 \\
2 x-\frac{4 q}{x^{2}} & =0 \\
\frac{2 x^{3}-4 q}{x^{2}} & =0 \\
2 x^{3}-4 q & =0 \\
2 x^{3} & =4 q \\
x^{3} & =\frac{4 q}{2} \\
x^{3} & =2 q \\
x & =(2 q)^{\frac{1}{3}}
\end{aligned}
$$

$$
\text { Put } \quad x=(2 q)^{\frac{1}{3}} \text { in }
$$

$$
\frac{\mathrm{d}^{2} S}{\mathrm{dx}^{2}}=2+\frac{8 q}{\left[(2 q)^{\frac{1}{3}}\right]^{3}}
$$

$$
=2+\frac{8 q}{2 q}
$$

$$
=2+4
$$

$$
=6>0
$$

$\therefore \quad$ Surface area is minimum at $\quad x=(2 q)^{\frac{1}{3}}$

Now

$$
\begin{aligned}
& \mathrm{x}^{3}=2 \mathrm{q} \\
& \mathrm{q}=\frac{\mathrm{x}^{3}}{2}
\end{aligned}
$$

Put $\quad q=\frac{x^{3}}{2}$ in eq. (1)
$y=\frac{\frac{x^{3}}{2}}{x^{2}}$
Depth $=\mathrm{y}=\frac{\mathrm{x}}{2}$ Ans
Q.10: Find the dimensions of the rectangle of maximum area which fits, inside the semi-circle of radius $\mathbf{8} \mathbf{c m}$ as shown in the figure.

Solution:

Let
Length of rectangle $=2 \mathrm{x} \mathrm{cm}$
Width of rectangle $=\quad \mathrm{y} \mathrm{cm}$
From right angle $\Delta \mathrm{EBC}$

$$
\begin{align*}
(8)^{2} & =x^{2}+y^{2} \\
\mathrm{y}^{2} & =64-\mathrm{x}^{2} \\
\mathrm{y} & =\sqrt{64-\mathrm{x}^{2}} \tag{1}\\
\text { Area }=\mathrm{A} & =(2 \mathrm{x})(\mathrm{y}) \\
\mathrm{A} & =2 \mathrm{x} \sqrt{64-\mathrm{x}^{2}}
\end{align*}
$$

Diff. w.r.t. ' x '

$$
\begin{aligned}
& \frac{\mathrm{dA}}{\mathrm{dx}}=2\left[\mathrm{x} \cdot \frac{1}{2}\left(64-\mathrm{x}^{2}\right)^{\frac{-1}{2}}-2 \mathrm{x}+\sqrt{64-\mathrm{x}^{2}}\right] \\
& \frac{\mathrm{dA}}{\mathrm{dx}}=2\left[\frac{-\mathrm{x}^{2}}{\sqrt{64-\mathrm{x}^{2}}}+\sqrt{64-\mathrm{x}^{2}}\right] \\
& \frac{\mathrm{dA}}{\mathrm{dx}}=2\left[\frac{-\mathrm{x}^{2}+64-\mathrm{x}^{2}}{\sqrt{64-\mathrm{x}^{2}}}\right] \\
& \frac{\mathrm{dA}}{\mathrm{dx}}=2\left(\frac{64-2 \mathrm{x}^{2}}{\sqrt{64-\mathrm{x}^{2}}}\right)
\end{aligned}
$$

For stationary points
Put $\quad \frac{\mathrm{dA}}{\mathrm{dx}}=0$

$$
\begin{aligned}
& 2\left(\frac{64-2 x^{2}}{\sqrt{64-x^{2}}}\right)=0 \\
& 64-2 x^{2}=0 \\
& 64=2 x^{2} \\
& x^{2} \quad=\frac{64}{2} \\
& x^{2} \quad=32 \\
& x \quad=\sqrt{32} \\
& x \quad=4 \sqrt{2}
\end{aligned}
$$

Before $\mathrm{x}=4 \sqrt{2}, \quad \frac{\mathrm{dA}}{\mathrm{dx}}>0$
After $\mathrm{x}=4 \sqrt{2}, \quad \frac{\mathrm{dA}}{\mathrm{dx}}<0$
$\therefore \quad$ Area is maximum at $\mathrm{x}=4 \sqrt{2}$
Put $\mathrm{x}=4 \sqrt{2}$ in eq. (1)

$$
\begin{aligned}
y & =\sqrt{64-(4 \sqrt{2}})^{2} \\
& =\sqrt{64-32} \\
& =\sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

Length of rectangle $=x=4 \sqrt{2} \mathrm{~cm}$
Width of rectangle $=y=4 \sqrt{2} \mathrm{~cm}$
So the dimensions of rectangle are $4 \sqrt{2} \mathrm{~cm}, 4 \sqrt{2} \mathrm{~cm}$

Q.11: Find the point on the curve $y=x^{2}-1$ that is closest to the point $(3,-1)$.

Solution:

$$
y=x^{2}-1
$$

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the point on the curve and $\mathrm{A}(3,-1)$ be the given point.
Now \quad Distance $=l=|\mathrm{PA}|$

$$
\begin{aligned}
l & =\sqrt{(\mathrm{x}-3)^{2}+(\mathrm{y}+1)^{2}} \\
l & =\sqrt{\mathrm{x}^{2}+9-6 \mathrm{x}+\left(\mathrm{x}^{2}-1+1\right)^{2}} \\
l & =\sqrt{\mathrm{x}^{2}+9-6 \mathrm{x}+\mathrm{x}^{4}} \\
l & =\sqrt{\mathrm{x}^{4}+\mathrm{x}^{2}-6 \mathrm{x}+9} \\
\frac{\mathrm{~d} \ell}{\mathrm{dx}} & =\frac{1}{2}\left(\mathrm{x}^{4}+\mathrm{x}^{2}-6 \mathrm{x}+9\right)^{\frac{-1}{2}}\left(4 \mathrm{x}^{3}+2 \mathrm{x}-6\right) \\
& =\frac{2\left(2 \mathrm{x}^{3}+\mathrm{x}-3\right)}{2 \sqrt{\mathrm{x}^{4}+\mathrm{x}^{2}-6 \mathrm{x}+9}}
\end{aligned}
$$

$$
\frac{\mathrm{d} \ell}{\mathrm{dx}}=\frac{2 \mathrm{x}^{3}+\mathrm{x}-3}{\sqrt{\mathrm{x}^{4}+\mathrm{x}^{2}-6 \mathrm{x}+9}}
$$

For stationary points
Put $\frac{\mathrm{d} \ell}{\mathrm{dx}}=0$

$$
\begin{aligned}
& \frac{2 x^{3}+x-3}{\sqrt{x^{4}+x^{2}-6 x+9}}=0 \\
& 2 x^{3}+x-3 \quad=0
\end{aligned}
$$

By using synthetic division

	2	0	1	-3
1		2	2	3
	2	2	3	0

$\mathrm{x}=1$ and depressed equation is $2 \mathrm{x}^{2}+2 \mathrm{x}+3=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\mathrm{a}=2, \quad \mathrm{~b}=2, \quad \mathrm{c}=3$
$x=\frac{-2 \pm \sqrt{(2)^{2}-4(2)(3)}}{2(2)}$
$x=\frac{-2 \pm \sqrt{4-24}}{4}$
$x=\frac{-2 \pm \sqrt{-20}}{4}$
Neglecting because it has imaginary roots.
Before $\mathrm{x}=1 \quad, \quad \frac{\mathrm{~d} \ell}{\mathrm{dx}}<0$
After $\mathrm{x}=1 \quad, \quad \frac{\mathrm{~d} \ell}{\mathrm{dx}}$
$\therefore \quad$ Distance is minimum at $\mathrm{x}=1$
Put $\quad \mathrm{x}=1 \quad$ in

$\therefore \quad$ Point is $\mathrm{P}(\mathrm{x}, \mathrm{y})=\mathrm{P}(1,0) \quad$ Ans.
Q.12: Find the point on the curve $y=x^{2}+1$ that is closest to the point $(18,1)$.

Solution:

$$
y=x^{2}+1
$$

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the point on the curve and $\mathrm{A}(18,1)$ be the given point.
Now

$$
\begin{aligned}
\text { Distance } & =\ell=|\mathrm{PA}| \\
l & =\sqrt{(\mathrm{x}-18)^{2}+(\mathrm{y}-1)^{2}} \\
l & =\sqrt{\mathrm{x}^{2}+324-36 \mathrm{x}+\left(\mathrm{x}^{2}+1-1\right)^{2}} \\
l & =\sqrt{\mathrm{x}^{2}+324-36 \mathrm{x}+\mathrm{x}^{4}}
\end{aligned}
$$

$$
\begin{aligned}
l & =\sqrt{\mathrm{x}^{4}+\mathrm{x}^{2}-36 \mathrm{x}+324} \\
\frac{\mathrm{~d} \ell}{\mathrm{dx}} & =\frac{1}{2}\left(\mathrm{x}^{4}+\mathrm{x}^{2}-36 \mathrm{x}+324\right)^{\frac{-1}{2}} \cdot\left(4 \mathrm{x}^{3}+2 \mathrm{x}-36\right) \\
\frac{\mathrm{d} \ell}{\mathrm{dx}} & =\frac{2\left(2 \mathrm{x}^{3}+\mathrm{x}-18\right)}{2 \sqrt{\mathrm{x}^{4}+\mathrm{x}^{2}-36 \mathrm{x}+324}} \\
\frac{\mathrm{~d} \ell}{\mathrm{dx}} & =\frac{2 \mathrm{x}^{3}+\mathrm{x}-18}{\sqrt{\mathrm{x}^{4}+\mathrm{x}^{2}-36 \mathrm{x}+324}}
\end{aligned}
$$

For stationary points
Put

$$
\begin{aligned}
& \frac{\mathrm{d} \ell}{\mathrm{dx}}=0 \\
& \frac{2 \mathrm{x}^{3}+\mathrm{x}-18}{\sqrt{\mathrm{x}^{4}+\mathrm{x}^{2}-36 \mathrm{x}+324}}=0 \\
& 2 \mathrm{x}^{3}+\mathrm{x}-18=0 \\
& \text { By using synthetic division }
\end{aligned}
$$

$L A$	-3	0	1	0
2		4	8	8
	2	4	9	0

$$
\mathrm{x}=2 \text { and depressed equation is } 2 \mathrm{x}^{2}+4 \mathrm{x}+9=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\mathrm{a}=2, \quad \mathrm{~b}=4, \quad \mathrm{c}=9
$$

$$
x=\frac{-4 \pm \sqrt{(4)^{2}-4(2)(9)}}{2(2)}
$$

$$
x=\frac{-4 \pm \sqrt{16-72}}{4}
$$

$$
x=\frac{-4 \pm \sqrt{-56}}{4}
$$

Neglecting because it has imaginary roots.

$$
\begin{aligned}
& \text { Before } \quad \mathrm{x}=2, \frac{\mathrm{~d} \ell}{\mathrm{dx}}<0 \\
& \text { After } \quad \mathrm{x}=2, \frac{\mathrm{~d} \ell}{\mathrm{dx}}>0
\end{aligned}
$$

$\therefore \quad$ Distance is minimum at $\mathrm{x}=2$
Put $x=2$ in
$y=x^{2}+1$
$y=(2)^{2}+1=4+1=5$
$\therefore \quad$ Point is $\mathrm{P}(\mathrm{x}, \mathrm{y})=\mathrm{P}(2,5) \quad$ Ans.

