EXERCISE 2.9

Q.1: Determine the intervals in which f is increasing or decreasing for the domain mentioned in each case.
(i) $\quad \mathbf{f}(\mathbf{x})=\sin \mathbf{x} \quad ; \quad \mathbf{x} \in(-\pi, \pi)$
(ii) $\quad \mathbf{f}(\mathbf{x})=\cos \mathbf{x} \quad ; \quad \mathbf{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (L.B 2005)
(iii) $f(x)=4-x^{2} \quad ; \quad x \in(-2,2)$
(iv) $\quad f(x)=x^{2}+3 x+2 \quad ; \quad x \in(-4,1)$

Solution:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\sin \mathrm{x} \\
& \mathrm{f}^{\prime}(\mathrm{x})=\cos \mathrm{x}
\end{aligned}
$$

Put
$\mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow \quad \cos x=0$
$\Rightarrow \quad x=\frac{-\pi}{2}, \frac{\pi}{2}$
So the sub-intervals are
$\left(-\pi, \frac{-\pi}{2}\right),\left(\frac{-\pi}{2}, \frac{\pi}{2}\right),\left(\frac{\pi}{2}, \pi\right)-1,00 \%$
For $\left(-\pi, \frac{-\pi}{2}\right)$
$\mathrm{f}^{\prime}(\mathrm{x})=\cos \mathrm{x}<0 \quad$ in $\left(-\pi, \frac{-\pi}{2}\right)$
So $f(x)$ is decreasing in $\left(-\pi, \frac{-\pi}{2}\right)$
$\operatorname{For}\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
$\mathrm{f}^{\prime}(\mathrm{x})=\cos \mathrm{x}>0 \quad$ in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
So $f(x)$ is increasing in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
For $\left(\frac{\pi}{2}, \pi\right)$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\cos \mathrm{x}<0 \quad \text { in }\left(\frac{\pi}{2}, \pi\right)
$$

So $\quad f(x)$ is decreasing in $\left(\frac{\pi}{2}, \pi\right)$
(ii) $f(x)=\cos x \quad ; \quad x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

$$
f^{\prime}(x)=-\sin x
$$

Put

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}) & =0 \\
\sin \mathrm{x} & =0 \\
\mathrm{x} & =0
\end{aligned}
$$

So the sub-intervals are $\left(\frac{-\pi}{2}, 0\right),\left(0, \frac{\pi}{2}\right)$
$\operatorname{For}\left(\frac{-\pi}{2}, 0\right)$
$\mathrm{f}^{\prime}(\mathrm{x})=-\sin \mathrm{x}>0$
is increasing in $\left(\frac{-\pi}{2}, 0\right)$ in $\left(\frac{-\pi}{2}, 0\right)$
$\left(0, \frac{\pi}{2}\right)$

$$
\mathrm{f}^{\prime}(\mathrm{x})=-\sin \mathrm{x}<0 \amalg \mathrm{in}\left(\overline{0}, \frac{\pi}{2}\right) \ggg 00
$$

So f is decreasing in $\left(0, \frac{\pi}{2}\right)$
(iii) $\mathrm{f}(\mathrm{x}) \quad=4-\mathrm{x}^{2} \quad ; \quad \mathrm{x} \in(-2,2) \quad$ (L.B 2008)
$f^{\prime}(x)=-2 x$
Put

$$
\begin{array}{ll}
\mathrm{f}^{\prime}(\mathrm{x}) & =0 \\
-2 \mathrm{x} & =0 \\
\mathrm{x} & =0
\end{array}
$$

So the sub-intervals are $(-2,0)$ and $(0,2)$
For $(-2,0)$

$$
f^{\prime}(x)=-2 x>0 \quad \text { in } \quad(-2,0)
$$

So $f(x)$ is increasing in $(-2,0)$
For (0,2)

$$
\mathrm{f}^{\prime}(\mathrm{x})=-2 \mathrm{x}<0 \quad \text { in } \quad(0,2)
$$

So $\quad f(x)$ is decreasing in $(0,2)$
(iv) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+3 \mathrm{x}+2 ; \mathrm{x} \in(-4,1)($ L. \boldsymbol{B} 2007) (G.B 2008)

$$
\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}+3
$$

Put

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=0 \\
& 2 \mathrm{x}+3=0 \\
& 2 \mathrm{x}=-3 \\
& \mathrm{x}=\frac{-3}{2}
\end{aligned}
$$

So the sub-intervals are $\left(-4, \frac{-3}{2}\right),\left(\frac{-3}{2}, 1\right)$
For $\left(-4 \quad, \frac{-3}{2}\right)$

$$
f^{\prime}(x)=2 x+3<0 \text { in }\left(-4, \frac{-3}{2}\right)
$$

So $\quad f(x)$ is decreasing in $\left(-4, \frac{-3}{2}\right)$ Po
For $\left(\frac{-3}{2}, 1\right)$

$$
f^{\prime}(x)=2 x+3>0 \text { in }\left(\frac{-3}{2}\right.
$$

CR

So $\quad f(x)$ is increasing in $\left(\frac{-3}{2}, \frac{1}{1}\right)$
Q.2: Find the extreme values of the following functions defined as
(i) $f(x)=1-x^{3}$
(ii) $f(x)=x^{2}-x-2$
(iii) $f(x)=5 x^{2}-6 x+2$
(iv) $f(x)=3 x^{2}$
(v) $f(x)=3 x^{2}-4 x+5$
(vi) $f(x)=2 x^{3}-2 x^{2}-36 x+3$
(vii) $f(x)=x^{4}-4 x^{2}$
(viii) $f(x)=(x-2)^{2}(x-1)$
(ix) $f(x)=5+3 x-x^{3} \quad($ L.B 2011)

Solution:

(i) $f(x)=1-x^{3}$
$f^{\prime}(x)=-3 x^{2}$
$f^{\prime \prime}(\mathrm{x})=-6 \mathrm{x}$
For stationary points

$$
\text { Put } \begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}) & =0 \\
-3 \mathrm{x}^{2} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}^{2}=0 \\
& \mathrm{x}=0
\end{aligned}
$$

The second derivative does not help in determining the extreme values.

Before	$\mathrm{x}=0$		
After	$\mathrm{x}=0$,	$\mathrm{f}^{\prime}(\mathrm{x})$

$\therefore \quad \mathrm{x}=0$ has a point of inflection.
Put

$$
\begin{aligned}
\mathrm{x} & =0 \text { in } \\
\mathrm{f}(\mathrm{x}) & =1-\mathrm{x}^{3} \\
\mathrm{f}(0) & =1-(0)^{3}=1
\end{aligned}
$$

$\therefore \quad$ Point of inflection is $(0,1)$
(ii) $f(x)=x^{2}-x-2$
$f^{\prime}(x)=2 x-1$
$f^{\prime \prime}(x)=2$
For stationery points
Put $\begin{aligned} \mathrm{f}^{\prime}(\mathrm{x}) & =0 \\ 2 \mathrm{x}-1 & =0 \\ 2 \mathrm{x} & =1 \\ \mathrm{x} & =\frac{1}{2}\end{aligned}$

$$
\mathrm{f}^{\prime \prime}\left(\frac{1}{2}\right)=2>0
$$

$\therefore \quad \mathrm{f}$ has relative minima at $\mathrm{x}=\frac{1}{2}$
Put $\mathrm{x}=\frac{1}{2}$ in

$$
f(x)=x^{2}-x-2
$$

$$
\mathrm{f}\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-\frac{1}{2}-2
$$

$$
=\frac{1}{4}-\frac{1}{2}-2
$$

$$
=\frac{1-2-8}{4}=\frac{-9}{4}
$$

Ans.
(iii)
(L.B 2009 (s)) (L.B 2009)

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =5 \mathrm{x}^{2}-6 \mathrm{x}+2 \\
\mathrm{f}^{\prime}(\mathrm{x}) & =10 \mathrm{x}-6 \\
\mathrm{f}^{\prime \prime}(\mathrm{x}) & =10
\end{aligned}
$$

For stationary points
Put

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}) & =0 \\
10 \mathrm{x}-6 & =0 \\
10 \mathrm{x} & =6 \\
\mathrm{x} & =\frac{6}{10} \\
& =\frac{3}{5}
\end{aligned}
$$

Put

$$
\begin{aligned}
& \mathrm{x}=\frac{3}{5} \text { in } \mathrm{f}^{\prime \prime}(\mathrm{x}) \text {, we get } \\
& \prime\left(\frac{3}{5}\right)=10>0 \\
& \text { has relative minima at } \mathrm{x}=\frac{3}{5}
\end{aligned}
$$

Put $\mathrm{x}=\frac{3}{5}$ in WAL 3 WMOM,00M

$$
f(x)=5 x^{2}-6 x+2
$$

$$
\mathrm{f}\left(\frac{3}{5}\right)=5\left(\frac{3}{5}\right)^{2}-6\left(\frac{3}{5}\right)+2
$$

$$
=5\left(\frac{9}{25}\right)-\frac{18}{5}+2
$$

$$
=\frac{9}{5}-\frac{18}{5}+2
$$

$$
=\frac{9-18+10}{5}
$$

$$
\mathrm{f}\left(\frac{3}{5}\right)=\frac{1}{5} \quad \text { Ans }
$$

(iv) $f(x)=3 x^{2}$

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x} \\
& \mathrm{f}^{\prime \prime}(\mathrm{x})=6
\end{aligned}
$$

For stationary points
Put $\mathrm{f}^{\prime}(\mathrm{x})=0$
$6 x=0$
$\mathrm{x}=0$
Put $\quad \mathrm{x}=0$ in $\mathrm{f}^{\prime \prime}(\mathrm{x})$, we get
$f^{\prime \prime}(0)=6>0$
$\therefore \quad \mathrm{f}$ has relative minima at $\mathrm{x}=0$
Put $\quad x=0 \quad$ in
$f(x)=3 x^{2}$
$\mathrm{f}(0)=3(0)^{2}$
$\mathrm{f}(0)=0$ Ans
(v)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}-4 \mathrm{x}+5 \\
& \mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}-4 \\
& \mathrm{f}^{\prime \prime}(\mathrm{x})=6 \\
& \text { onary points } \\
& \mathrm{f}^{\prime}(\mathrm{x}) \\
& 6 \mathrm{x}-4=0 \\
& 6 \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \\
& =\frac{4}{6} \\
& \\
& =
\end{aligned}
$$

Put $\mathrm{x}=\frac{2}{3} \operatorname{in} \mathrm{f}^{\prime \prime}(\mathrm{x})$, we get

$$
\mathrm{f}^{\prime \prime}\left(\frac{2}{3}\right)=6>0
$$

$\therefore \quad \mathrm{f}$ has relative minima at $\mathrm{x}=\frac{2}{3}$
Put $\mathrm{x}=\frac{2}{3}$ in

$$
f(x)=3 x^{2}-4 x+5
$$

$$
\begin{aligned}
\mathrm{f}\left(\frac{2}{3}\right) & =3\left(\frac{2}{3}\right)^{2}-4\left(\frac{2}{3}\right)+5 \\
& =3\left(\frac{4}{9}\right)-\frac{8}{3}+5 \\
& =\frac{4}{3}-\frac{8}{3}+5 \\
& =\frac{4-8+15}{3} \\
\mathrm{f}\left(\frac{2}{3}\right) & =\frac{11}{3} \text { Ans }
\end{aligned}
$$

(vi)
(G.B 2005)

$$
\begin{aligned}
& f(x)=2 x^{3}-2 x^{2}-36 x+3 \\
& f^{\prime}(x)=6 x^{2}-4 x-36 \\
& f^{\prime \prime}(x)=12 x-4
\end{aligned}
$$

For Stationary Points
Put

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=0 \\
& 6 \mathrm{x}^{2}-4 \mathrm{x}-36=0 \\
& 2\left(3 \mathrm{x}^{2}-2 \mathrm{x}-18\right)=0 \\
& 3 \mathrm{x}^{2}-2 \mathrm{x}-18=0 \\
& \mathrm{x} \quad=\quad \frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}=0}{2 \mathrm{a}}=0
\end{aligned}
$$

Here

$$
\begin{aligned}
& \mathrm{a}=3, \quad \mathrm{~b}=-2, \quad \mathrm{c}=-18 \\
& \mathrm{x}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(-18)}}{2(3)} \\
& \mathrm{x}=\frac{2 \pm \sqrt{4+216}}{6} \\
& \mathrm{x}=\frac{2 \pm \sqrt{220}}{6} \\
& \mathrm{x}=\frac{2 \pm \sqrt{4 \times 55}}{6} \\
& \mathrm{x}=\frac{2 \pm 2 \sqrt{55}}{6} \\
& \mathrm{x}=\frac{2(1 \pm \sqrt{55})}{6}
\end{aligned}
$$

$$
\mathrm{x}=\frac{1 \pm \sqrt{55}}{3}
$$

Put $\mathrm{x}=\frac{1+\sqrt{55}}{3}$ in $\mathrm{f}^{\prime \prime}(\mathrm{x})$, we get

$$
\begin{aligned}
\mathrm{f}^{\prime \prime}\left(\frac{1+\sqrt{55}}{3}\right) & =12\left(\frac{1+\sqrt{55}}{3}\right)-4 \\
& =4(1+\sqrt{55})-4 \\
& =4+4 \sqrt{55}-4 \\
& =4 \sqrt{55}>0
\end{aligned}
$$

$\therefore \quad \mathrm{f}$ has relative minima at $\mathrm{x}=\frac{1+\sqrt{55}}{3}$
Put $x=\frac{1+\sqrt{55}}{3} \quad$ in

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-2 \mathrm{x}^{2}-36 \mathrm{x}+3 \\
& \mathrm{f}\left(\frac{1+\sqrt{55}}{3}\right)=2\left(\frac{1+\sqrt{55}}{3}\right)^{3}-2\left(\frac{1+\sqrt{55}}{3-2}\right)^{2}-36\left(\frac{1+\sqrt{55}}{3}\right)+3 \\
& =2 \frac{[1+55 \sqrt{55}+3 \sqrt{55}+3(55)]}{27}-2\left(\frac{1+55+2 \sqrt{55}}{9}\right)-12(1+\sqrt{55})+3 \\
& =\frac{2(166+58 \sqrt{55})}{27}-2\left(\frac{56+2 \sqrt{55}}{9}\right)-12-12 \sqrt{55}+3 \\
& =\frac{332+116 \sqrt{55}}{27}-\frac{112+4 \sqrt{55}}{9}-12 \sqrt{55}-9 \\
& =\frac{332+116 \sqrt{55}-3(112+4 \sqrt{55})-324 \sqrt{55}-243}{27} \\
& =\frac{89-208 \sqrt{55}-336-12 \sqrt{55}}{27} \\
& \mathrm{f}\left(\frac{1+\sqrt{55}}{3}\right)=\frac{1}{27}(-247-220 \sqrt{55})
\end{aligned}
$$

$$
\text { Put } x=\frac{1-\sqrt{55}}{3} \text { in } f^{\prime \prime}(x) \text {, we get }
$$

$$
\mathrm{f}^{\prime \prime}\left(\frac{1-\sqrt{55}}{3}\right)=12\left(\frac{1-\sqrt{55}}{3}\right)-4
$$

$$
=4(1-\sqrt{55})-4=4-4 \sqrt{55}-4=-4 \sqrt{55}<0
$$

$\therefore \quad \mathrm{f}$ has relative maxima at $\mathrm{x}=\frac{1-\sqrt{55}}{3}$
Put $\quad x=\frac{1-\sqrt{55}}{3}$ in

$$
\begin{aligned}
f(x) & =2 x^{3}-2 x^{2}-36 x+3 \\
& =2\left(\frac{1-\sqrt{55}}{3}\right)^{3}-2\left(\frac{1-\sqrt{55}}{3}\right)^{2}-36\left(\frac{1-\sqrt{55}}{3}\right)+3
\end{aligned}
$$

$$
=\frac{2[1-55 \sqrt{55}-3 \sqrt{55}+3(55)]}{27}-2\left(\frac{1+55-2 \sqrt{55}}{9}\right)-12(1-\sqrt{55})+3
$$

$$
=\frac{2(166-58 \sqrt{55})}{27}-2\left(\frac{56-2 \sqrt{55}}{9}\right)-12+12 \sqrt{55}+3
$$

$$
=\frac{332-116 \sqrt{55}}{27}-\frac{112-4 \sqrt{55}}{9}+12 \sqrt{55}-9
$$

$$
=\frac{332-116 \sqrt{55}-3(112-4 \sqrt{55})+324 \sqrt{55}-243}{27}
$$

$$
=\frac{89+208 \sqrt{55}-336+12 \sqrt{55}}{27}
$$

$\mathrm{f}\left(\frac{1-\sqrt{55}}{3}\right)=\frac{1}{27}(-247+220 \sqrt{55})$
(vii) $f(x)=x^{4}-4 \mathbf{x}^{2}$

$$
\mathrm{f}^{\prime}(\mathrm{x})=4 \mathrm{x}^{3}-8 \mathrm{x}=3001000
$$

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})=12 \mathrm{x}^{2}-8
$$

For stationary points
Put

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}) & =0 \\
4 \mathrm{x}^{3}-8 \mathrm{x} & =0 \\
4 \mathrm{x}\left(\mathrm{x}^{2}-2\right) & =0 \\
\mathrm{x}\left(\mathrm{x}^{2}-2\right) & =0
\end{aligned}
$$

Either

$$
\begin{aligned}
\mathrm{x}=0 \quad \text { or } \quad \mathrm{x}^{2}-2 & =0 \\
\mathrm{x}^{2} & =2 \\
\mathrm{x} & = \pm \sqrt{2}
\end{aligned}
$$

Put $x=0$ in $f^{\prime \prime}(x)$, we get

$$
\mathrm{f}^{\prime \prime}(0)=12(0)^{2}-8=-8<0
$$

$\therefore \quad \mathrm{f}$ has relative maxima at $\mathrm{x}=0$

$$
\left.\left.\begin{array}{l}
\text { Put } \mathrm{x}=0 \text { in } \\
\mathrm{f}(\mathrm{x}) \\
\mathrm{f}(0) \\
\mathrm{f}(0)-4 \mathrm{x}^{2} \\
\mathrm{f}(0) \\
\mathrm{f}(0)
\end{array}\right)^{4}-4(0)^{2}\right)
$$

Put

$$
\begin{aligned}
\mathrm{x} & =\sqrt{2} \text { in } \mathrm{f}^{\prime \prime}(\mathrm{x}), \text { w get } \\
\mathrm{f}^{\prime \prime}(\sqrt{2}) & =12(\sqrt{2})^{2}-8 \\
& =12(2)-8 \\
& =24-8 \\
& =16>0
\end{aligned}
$$

$\therefore \quad \mathrm{f}$ has relative minima at $\mathrm{x}=\sqrt{2}$

$$
\begin{aligned}
\text { Put } \mathrm{x} & =\sqrt{2} \quad \text { in } \\
\mathrm{f}(\mathrm{x}) & =\mathrm{x}^{4}-4 \mathrm{x}^{2} \\
\mathrm{f}(\sqrt{2}) & =(\sqrt{2})^{4}-4(\sqrt{2})^{2} \\
& =4-4(2) \\
& =4-8 \\
\mathrm{f}(\sqrt{2}) & =-4
\end{aligned}
$$

Put

$$
\begin{aligned}
\mathrm{x} & =-\sqrt{2} \text { in } \mathrm{f}^{\prime \prime(\mathrm{x}), \text { we get }} \\
\mathrm{f}^{\prime \prime}(-\sqrt{2}) & =12(-\sqrt{2})-8 \\
& =12(2)-8 \\
& =24-8 \\
& =16>0
\end{aligned}
$$

$\therefore \quad f(x)$ has relative minima at $x=-\sqrt{2}$
Put $x=-\sqrt{2}$ in
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-4 \mathrm{x}^{2}$
$f(-\sqrt{2})=(-\sqrt{2})^{4}-4(-\sqrt{2})^{2}$
$=4-4(2)$
$=4-8$

$$
f(-\sqrt{2})=-4
$$

(viii)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=(\mathrm{x}-2)^{2}(\mathrm{x}-1) \\
& \mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}+4-4 \mathrm{x}\right)(\mathrm{x}-1) \\
& \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+4 \mathrm{x}-4 \mathrm{x}^{2}-\mathrm{x}^{2}-4+4 \mathrm{x} \\
& \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-5 \mathrm{x}^{2}+8 \mathrm{x}-4 \\
& \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-10 \mathrm{x}+8 \\
& \mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}-10
\end{aligned}
$$

For stationary points
Put

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=0 \\
& 3 \mathrm{x}^{2}-10 \mathrm{x}+8=0 \\
& 3 \mathrm{x}^{2}-6 \mathrm{x}-4 \mathrm{x}+8=0 \\
& 3 \mathrm{x}(\mathrm{x}-2)-4(\mathrm{x}-2)=0 \\
& (\mathrm{x}-2)(3 \mathrm{x}-4)=0
\end{aligned}
$$

Either

$$
\begin{array}{rlrl}
x-2=0 & \text { or } & 3 x-4 & =0 \\
3 x & =4 \\
x=2 & & =\frac{4}{3}
\end{array}
$$

Put $\quad x=2$ in $f^{\prime \prime}(x)$, we get

$$
\begin{aligned}
f^{\prime \prime}(2) & =6(2)-10 a n=10 \\
& =12-10 \\
& =2>0
\end{aligned}
$$

$\therefore \quad \mathrm{f}$ has relative minima at $\mathrm{x}=2$
Put $x=2$ in

$$
f(x)=(x-2)^{2}(x-1)
$$

$$
f(2)=(2-2)^{2}(2-1)
$$

$$
f(2)=(0)^{2}(1)
$$

$$
\mathrm{f}(2)=0
$$

Put $\quad \mathrm{x}=\frac{4}{3}$ in $\mathrm{f}^{\prime \prime}(\mathrm{x})$, we get

$$
\begin{aligned}
\mathrm{f}^{\prime \prime}\left(\frac{4}{3}\right) & =6\left(\frac{4}{3}\right)-10 \\
& =8-10=-2<0
\end{aligned}
$$

$\therefore \quad \mathrm{f}$ has relative maxima at $\mathrm{x}=\frac{4}{3}$
Put

$$
\begin{aligned}
\mathrm{x} & =\frac{4}{3} \text { in } \\
\mathrm{f}(\mathrm{x}) & =(\mathrm{x}-2)^{2}(\mathrm{x}-1) \\
\mathrm{f}\left(\frac{4}{3}\right) & =\left(\frac{4}{3}-2\right)^{2}\left(\frac{4}{3}-1\right) \\
& =\left(\frac{4-6}{3}\right)^{2}\left(\frac{4-3}{3}\right) \\
& =\left(\frac{-2}{3}\right)^{2}\left(\frac{1}{3}\right) \\
& =\left(\frac{4}{9}\right)\left(\frac{1}{3}\right)
\end{aligned}
$$

$$
\mathrm{f}\left(\frac{4}{3}\right)=\frac{4}{27}
$$

(ix)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=5+3 \mathrm{x}-\mathrm{x}^{3} \\
& \mathrm{f}^{\prime}(\mathrm{x})=3-3 \mathrm{x}^{2} \\
& \mathrm{f}^{\prime \prime}(\mathrm{x})=-6 \mathrm{x}
\end{aligned}
$$

For stationery points
Put $\quad f^{\prime}(x)=0$

$$
3-3 x^{2}=0
$$

$$
-3 x^{2}=-3
$$

$$
x^{2}=\frac{-3}{-3}
$$

$$
x^{2}=1
$$

$$
\mathrm{x}= \pm 1
$$

Put $\quad x \quad=1 \operatorname{in} f^{\prime \prime}(x)$, we get

$$
f^{\prime \prime}(1)=-6(1)=-6<0
$$

$\therefore \quad \mathrm{f}$ has relative maxima at $\mathrm{x}=1$
Put $x=1 \quad$ in

$$
\mathrm{f}(\mathrm{x})=5+3 \mathrm{x}-\mathrm{x}^{3}
$$

$$
f(1)=5+3(1)-(1)^{3}
$$

$$
=5+3-1
$$

$$
\mathrm{f}(1)=7
$$

Put $x=-1 \quad \inf ^{\prime \prime}(x)$, we get

$$
f^{\prime \prime}(-1)=-6(-1)=6>0
$$

$\therefore \quad \mathrm{f}$ has relative minima at $\mathrm{x}=-1$
Put

$$
\begin{array}{ll}
\mathrm{x} & =-1 \quad \text { in } \\
\mathrm{f}(\mathrm{x}) & =5+3 \mathrm{x}-\mathrm{x}^{3} \\
\mathrm{f}(-1) & =5+3(-1)-(-1)^{3} \\
& =5-3+1 \\
\mathrm{f}(-1) & =3
\end{array}
$$

Q.3: Find the maximum and minimum values of the function defined by the following equation occuring in the interval $[0,2 \pi]$.
$f(x)=\sin x+\cos x$

Solution:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\sin \mathrm{x}+\cos \mathrm{x} \\
\mathrm{f}^{\prime}(\mathrm{x}) & =\cos \mathrm{x}-\sin \mathrm{x} \\
\mathrm{f}^{\prime \prime}(\mathrm{x}) & =-\sin \mathrm{x}-\cos \mathrm{x}
\end{aligned}
$$

For stationary points
Put

Since tangent is positive the in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrant with reference angle $\frac{\pi}{4}$.

$$
\begin{aligned}
\mathrm{x} \quad \frac{\pi}{4} \quad, \quad \mathrm{x} & =\pi+\frac{\pi}{4} \\
\mathrm{x} & =\frac{5 \pi}{4}
\end{aligned}
$$

Put $\quad \mathrm{x}=\frac{\pi}{4}$ in $\mathrm{f}^{\prime \prime}(\mathrm{x})$, we get

$$
\begin{aligned}
\mathrm{f}^{\prime \prime}\left(\frac{\pi}{4}\right) & =-\sin \frac{\pi}{4}-\cos \frac{\pi}{4} \\
& =\frac{-1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \\
& =\frac{-1-1}{\sqrt{2}}
\end{aligned}
$$

$$
=\frac{-2}{\sqrt{2}}<0
$$

$\therefore \quad \mathrm{f}$ has relative maxima at $\mathrm{x}=\frac{\pi}{4}$
Put $\quad x=\frac{\pi}{4}$ in

$$
f(x) \quad=\sin x+\cos x
$$

$$
f\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}
$$

$$
=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}
$$

$$
=\frac{1+1}{\sqrt{2}}
$$

$$
=\frac{2}{\sqrt{2}}
$$

Hf llaidn

Put $\mathrm{x}=\frac{5 \pi}{4}$ in $\mathrm{f}^{\prime \prime}(\mathrm{x})$, we get $5=101100 \mathrm{M}$

$$
\begin{aligned}
\mathrm{f}^{\prime \prime}\left(\frac{5 \pi}{4}\right) & =-\sin \frac{5 \pi}{4}-\cos \frac{5 \pi}{4} \\
& =\left(\frac{-1}{\sqrt{2}}\right)-\left(\frac{-1}{\sqrt{2}}\right) \\
& =\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
& =\frac{1+1}{\sqrt{2}} \\
& =\frac{2}{\sqrt{2}}>0
\end{aligned}
$$

$\therefore \quad \mathrm{f}$ has relative minima at $\quad \mathrm{x}=\frac{5 \pi}{4}$

$$
\text { Put } \begin{aligned}
\mathrm{x}= & \frac{5 \pi}{4} \text { in } \\
\mathrm{f}(\mathrm{x}) & =\sin \mathrm{x}+\cos \mathrm{x} \\
\mathrm{f}\left(\frac{5 \pi}{4}\right) & =\sin \frac{5 \pi}{4}+\cos \frac{5 \pi}{4} \\
& =\frac{-1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \\
& =\frac{-1-1}{\sqrt{2}} \\
& =\frac{-2}{\sqrt{2}} \\
& =\frac{-\sqrt{2} \times \sqrt{2}}{\sqrt{2}} \\
\mathrm{f}\left(\frac{5 \pi}{4}\right) & =-\sqrt{2}
\end{aligned}
$$

Q.4: Show that $y=\frac{\ell n x}{x}$ has maximum value at $x=e$

Solution:

$$
\begin{aligned}
y & =\frac{\ell n x}{x} \\
\frac{d y}{d x} & =\frac{x \cdot \frac{1}{x}-\ell n x \cdot 1}{x^{2}} \\
\frac{d y}{d x} & =\frac{1-\ell n x}{x^{2}} \\
\frac{d^{2} y}{d x x^{2}} & =\frac{x^{2} \cdot \frac{-1}{x}-(1-\ell n x) \cdot 2 x}{\left(x^{2}\right)^{2}} \\
\frac{d^{2} y}{d^{2}} & =\frac{-x-2 x+2 x \ell n x}{x^{4}} \\
\frac{d^{2} y}{d^{2}} & =\frac{-3 x+2 x \ell n x}{x^{4}}
\end{aligned}
$$

For stationary points

$$
\text { Put } \quad \begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}=0 \\
& \frac{1-\ln \mathrm{x}}{\mathrm{x}^{2}}=0 \\
& 1-\ln \mathrm{x}=0 \\
& 1=\ell \mathrm{nx} \\
& \operatorname{lnx}=\ell \mathrm{ne}
\end{aligned}
$$

$$
\mathrm{x}=\mathrm{e} \quad \because \ell \text { ne }=1
$$

Put $\quad x=e \quad$ in $\frac{d^{2} y}{d^{2} x}$, we get

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{~d}^{2} \mathrm{x}} & =\frac{-3 \mathrm{e}+2 \mathrm{e}}{\mathrm{e}^{4}} \\
& =\frac{-\mathrm{e}}{\mathrm{e}^{4}} \\
& =\frac{-1}{\mathrm{e}^{3}}<0 \\
\text { nows } & y=\frac{\ln \mathrm{x}}{\mathrm{x}} \text { has maximum value at } \mathrm{x}=\mathrm{e} .
\end{aligned}
$$

Q.5: Show that $\mathrm{y}=\mathrm{x}^{\mathrm{x}}$ has a minimum value at $\mathrm{x}=\frac{1}{\mathrm{e}} \quad$ (L.B 2006)

Solution:

$$
\begin{aligned}
& y=x^{x} \\
& \text { Taking ' } \ell n \text { ' on both sides } \\
& \ln y=\ell n x^{x} \\
& \ell \text { ny } \quad=x \ell n x \\
& \frac{1}{y} \cdot \frac{d y}{d x}=x \cdot \frac{1}{x}+\ell n x .1 \\
& \frac{d y}{d x}=y[1+\ell n x] \\
& \frac{d y}{d x}=x^{x}(1+\ell n x) \\
& \frac{d^{2} y}{d x^{2}}=x^{x} \frac{d}{d x}(1+\ell n x)+(1+\ell \ln x) \frac{d}{d x}\left(x^{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=x^{x} \cdot \frac{1}{x}+(1+\ell n x) \cdot x^{x}(1+\ell n x) \\
& \frac{d^{2} y}{d x^{2}}=x^{x}\left[\frac{1}{x}+(1+\ln x)^{2}\right]
\end{aligned}
$$

For stationary points
Put $\quad \frac{d y}{d x}=0$

$$
\begin{aligned}
\mathrm{x}^{\mathrm{x}}(1+\ell \mathrm{n} \mathrm{x}) & =0 \\
1+\ln \mathrm{x} & =0 \quad, \quad \mathrm{x}^{\mathrm{x}} \neq 0 \\
\ell \mathrm{ne}+\ell \mathrm{nx} & =0 \\
\ell \mathrm{n} \mathrm{x} & =-\ell \mathrm{ne} \\
\ell \mathrm{n} x & =\ell \mathrm{ne}^{-1} \\
\mathrm{x} & =\mathrm{e}^{-1} \\
\mathrm{x} & =\frac{1}{\mathrm{e}}
\end{aligned}
$$

Put

$$
\begin{aligned}
\mathrm{x} & =\frac{1}{\mathrm{e}} \text { in } \frac{\mathrm{d}^{2} \mathrm{~d}}{\mathrm{~d}^{2} \mathrm{x}}, \text { we get } \\
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}} & =\left(\frac{1}{\mathrm{e}}\right)^{\left.\frac{1}{\mathrm{e}}\left[\frac{1}{\frac{1}{e}}+\left(1-+\ln \frac{1}{\mathrm{e}}\right)^{2}\right]\right]} \\
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}} & =\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{\mathrm{e}}}\left[\mathrm{e}+\left(1+\ln \mathrm{e}^{-1}\right)^{2}\right] \\
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}} & =\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{\mathrm{e}}}\left[\mathrm{e}+(1-\ell \mathrm{ne})^{2}\right] \\
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}} & =\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{\mathrm{e}}}\left[\mathrm{e}+(1-1)^{2}\right] \\
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}} & =\mathrm{e}\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{\mathrm{e}}>0}>0
\end{aligned}
$$

Shows $\mathrm{y}=\mathrm{x}^{\mathrm{x}}$ has a minimum value at $\mathrm{x}=\frac{1}{\mathrm{e}}$

