

INTEGRATION

EXERCISE 3.1

Q. 1 Find δy and dy in the following cases.
(i) $y=x^{2}-1$ when x changes from 3 to 3.02 (Lhr.Board 2008, 2011, Guj.Board 2008)
(ii) $y=x^{2}+2 x$ when x changes from 2 to 1.8
(iii) $y=\sqrt{x}$ when x changes from 4 to $4.41 \quad$ (Lhr. Board 2005)

Solution:

(i) $y=x^{2}-1$ when x changes from 3 to 3.02

$$
\mathrm{x}=3, \quad \delta \mathrm{x}=3.02-3=0.02
$$

$$
\begin{aligned}
\mathrm{y}+\delta \mathrm{y} & =(\mathrm{x}+\delta \mathrm{x})^{2}-1-\mathrm{y} \\
& =(\mathrm{x}+\delta \mathrm{x})^{2}-1-\left(\mathrm{x}^{2}=1\right)
\end{aligned}
$$

$$
=(x+\delta x)^{2}-1-x^{2}+1
$$

$$
=(x+\delta x)^{2}-x^{2}
$$

$$
=(3+0.02)^{2}-(3)^{2}
$$

$$
=(3.02)^{2}-9
$$

$$
=9.1204-9
$$

$$
=0.1204 \quad \text { Ans. }
$$

$$
\mathrm{y} \quad=\mathrm{x}^{2}-1
$$

Taking differential on both sides

$$
\begin{array}{rlr}
\mathrm{dy} & =\mathrm{d}\left(\mathrm{x}^{2}\right)-\mathrm{d}(1) & \\
\mathrm{dy} & =2 \mathrm{xdx} \\
& =2(3)(0.02) & (\because \mathrm{dx}=\delta \mathrm{x})
\end{array}
$$

$\mathrm{dy}=0.12 \quad$ Ans.
(ii) $y=x^{2}+2 x$ when x changes from 2 to 1.8

$$
x=2, \quad \delta x=1.8-2=-0.2
$$

$y+\delta y=(x+\delta x)^{2}+2(x+\delta x)$
$\delta y=(x+\delta x)^{2}+2 x+2 \delta x-y$
$\delta \mathrm{y}=(\mathrm{x}+\delta \mathrm{x})^{2}+2 \mathrm{x}+2 \delta \mathrm{x}-\left(\mathrm{x}^{2}+2 \mathrm{x}\right)$
$=(x+\delta x)^{2}+2 x+2 \delta x-x^{2}-2 x$
$=(x+\delta x)^{2}+2 \delta x-x^{2}$
$=(2-0.2)^{2}+2(-0.2)-(2)^{2}$
$=(1.8)^{2}-0.4-4$
= 3.24-4.4
סy $=-1.16 \quad$ Ans.
$y=x^{2}+2 x$
Taking differential on both sides
$d y=d\left(x^{2}\right)+2 d x$
dy $=2 x d x+2 d x$
$=2(2)(-0.2)+2(-0.2)=0.0 \%(\because \delta \mathrm{~d}=\mathrm{dx})$
$=-0.8-0.4$
dy $=-1.2 \quad$ Ans
(iii) $y=\sqrt{x}$ when x changes from 4 to 4.41

$$
x=4, \delta x=4.41-4=0.41
$$

$y+\delta y=\sqrt{x+\delta x}$
$\delta y=\sqrt{x+\delta x}-y$
$\delta y=\sqrt{x+\delta x}-\sqrt{x}$
$=\sqrt{4+0.41}-\sqrt{4}$
$=\sqrt{4.41}-2$
$=2.1-2=0.1 \quad$ Ans.
$\mathrm{y}=\sqrt{\mathrm{x}}$

Taking differential on both sides

$$
\begin{aligned}
\mathrm{dy} & =\mathrm{d}(\sqrt{\mathrm{x}}) \\
\mathrm{dy} & =\frac{1}{2} \mathrm{x}^{-1 / 2} \mathrm{dx} \\
\text { dy } & =\frac{1}{2 \sqrt{x}} \mathrm{dx} \\
\text { dy } & =\frac{0.41}{2 \sqrt{4}} \\
\text { dy } & =\frac{0.41}{4}=0.1025 \quad(\because \delta x=d x) \\
& \quad \text { Ans. }
\end{aligned}
$$

Q. 2 Using differentials find $\frac{d y}{d x}$ and $\frac{d x}{d y}$ in the following equations.
(i) $x y+x=4$
(ii) $x^{2}+2 y^{2}=16$
(iii) $\mathrm{x}^{4}+\mathrm{y}^{2}=\mathrm{xy}^{2}$
(iv) $\quad \mathrm{xy}-\ln \mathrm{x}=\mathrm{c}$

Solution:

(i) $\quad \mathrm{xy}+\mathrm{x}=4 \quad$ (Guj. Board 2008)

Taking differential on both sides ©1~00,
$\mathrm{d}(\mathrm{xy})+\mathrm{dx}=\mathrm{d}(4)$
$x d y+y d x+d x=0$

$$
\begin{aligned}
x d y & =-y d x-d x \\
d y & =-\frac{(y+1) d x}{x} \\
\frac{d y}{d x} & =-\frac{y+1}{x} \quad \text { Ans. } \\
\frac{d x}{d y} & =-\frac{x}{y+1} \quad \text { Ans. }
\end{aligned}
$$

(ii) $x^{2}+2 y^{2}=16 \quad$ (Lhr. Board 2008)

Taking differential on both sides

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}^{2}\right)+2 \mathrm{~d}\left(\mathrm{y}^{2}\right)=\mathrm{d}(16) \\
& 2 \mathrm{xdx}+4 \mathrm{ydy}=0
\end{aligned}
$$

$$
4 y d y=-2 x d x
$$

$\frac{d y}{d x}=\frac{-2 x}{4 y}$
$\frac{d y}{d x} \quad=-\frac{x}{2 y}$ Ans.
$\frac{\mathrm{dx}}{\mathrm{dy}} \quad=-\frac{2 \mathrm{y}}{\mathrm{x}}$ Ans.
(iii) $\mathbf{x}^{4}+\mathbf{y}^{2}=\mathbf{x y}{ }^{2}$

Taking differential on both sides

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}^{4}\right)+\mathrm{d}\left(\mathrm{y}^{2}\right) & =\mathrm{d}\left(\mathrm{xy}^{2}\right) \\
4 \mathrm{x}^{3} \mathrm{dx}+2 \mathrm{ydy}= & \mathrm{xd}\left(\mathrm{y}^{2}\right)+\mathrm{y}^{2} \mathrm{dx} \\
4 \mathrm{x}^{3} \mathrm{dx}+2 \mathrm{ydy} & =2 \mathrm{xy} \mathrm{dy}+\mathrm{y}^{2} \mathrm{dx} \\
2 \mathrm{ydy}-2 \mathrm{xydy} & =\mathrm{y}^{2} \mathrm{dx}-4 \mathrm{x}^{3} \mathrm{dx} \\
2 \mathrm{y}(1-\mathrm{x}) \mathrm{dy} & =\left(\mathrm{y}^{2}-4 \mathrm{x}^{3}\right) \mathrm{dx} \\
\frac{d y}{\mathrm{dx}} & =\frac{\mathrm{y}^{2}-4 \mathrm{x}^{3}}{2 \mathrm{y}(1-\mathrm{x})} \\
\frac{\mathrm{dx}}{\mathrm{dy}} & =\frac{2 \mathrm{y}(1-\mathrm{x})}{\mathrm{y}^{2}-4 \mathrm{x}^{3}} \\
\frac{\mathrm{dx}}{\mathrm{dy}} & =\frac{2 \mathrm{y}(\mathrm{x}-1)}{4 \mathrm{x}^{3}-\mathrm{y}^{2}} \quad \text { Ans. }
\end{aligned}
$$

(iv) $\quad \mathbf{x y}-\ln x=\mathbf{c}$

Taking differential on both sides

$$
\begin{aligned}
d(x y)-d(\ln x) & =d(c) \\
x d y+y d x-\frac{1}{x} d x & =0 \\
x d y & =\frac{1}{x} d x-y d x \\
x d y & =\left(\frac{1}{x}-y\right) d x \\
x d y & =\left(\frac{1-x y}{x}\right) d x
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d y}{d x} & =\frac{1-x y}{x^{2}} \\
\frac{d x}{d y} & =\frac{x^{2}}{1-x y} \quad \text { Ans. }
\end{array}
$$

Q. 3 Use differentials to approximate the values of
(i) $\sqrt[4]{17}$
(ii) $(\mathbf{3 1})^{1 / 5}$
(iii) $\boldsymbol{\operatorname { c o s }} \mathbf{2 9}^{\circ}$
(iv) $\mathbf{S i n}^{6} 1^{\circ}$

Solution:

(i) $\sqrt[4]{17}$

Let

$$
\begin{aligned}
& \mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt[4]{\mathrm{x}} \text { with } x=16, \delta \mathrm{x}=\mathrm{dx}=1 \\
& \mathrm{dy}=\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx} \\
&=\frac{1}{4} \mathrm{x}^{\frac{-3}{4}} \mathrm{dx} \\
&=\frac{\mathrm{dx}}{4 \mathrm{x}^{3 / 4}}=\frac{1}{4(16)^{3 / 4}} \\
&=\frac{1}{4\left(2^{4}\right)^{3 / 4}} \\
&=\frac{1}{4(8)}=\frac{1}{32} \\
&=0.03125 \\
& \begin{aligned}
\mathrm{dy}
\end{aligned} \\
& \begin{aligned}
& \mathrm{f}(\mathrm{x}) \\
& \mathrm{f}(16)=\sqrt[4]{\mathrm{x}} \\
&=\left(2^{16}\right)^{1 / 4} \\
&=2 \\
& \mathrm{Using} \\
& \mathrm{f}(\mathrm{x}+\delta \mathrm{x}) \\
& \mathrm{f}(16+1) \approx \mathrm{f}(\mathrm{x})+\mathrm{dy} \\
& \mathrm{f}(17)
\end{aligned}
\end{aligned}
$$

$\sqrt[4]{17} \quad \approx \quad 2.03125 \quad$ Ans.
(ii) $\quad(\mathbf{3 1})^{1 / 5}$

Let

$$
y=f(x)=x^{1 / 5} \quad \text { with } x=32, \delta x=d x=-1
$$

$$
d y=f^{\prime}(x) d x
$$

$$
=\frac{1}{5} \mathrm{x}^{-4 / 5} \mathrm{dx}
$$

$$
=\frac{\mathrm{dx}}{5 \mathrm{x}^{4 / 5}}
$$

$$
=\frac{-1}{5(32)^{4 / 5}}
$$

$$
=\frac{-1}{5\left(2^{5}\right)^{4 / 5}}
$$

$$
=\frac{-1}{5(16)}
$$

$$
=\frac{-1}{80}
$$

$$
\text { dy }=-0.0125 \quad \square \square=5011000
$$

$$
f(x)=x^{1 / 5}
$$

$$
f(32)=(32)^{1 / 5}
$$

$$
=\left(2^{5}\right)^{1 / 5}
$$

$$
=2
$$

Using $\mathrm{f}(\mathrm{x}+\delta \mathrm{x}) \approx \mathrm{f}(\mathrm{x})+\mathrm{dy}$
$\mathrm{f}(32-1) \approx \mathrm{f}(32)+\mathrm{dy}$
$\mathrm{f}(31) \approx 2-0.0125$
$(31)^{1 / 5} \approx 1.9875 \quad$ Ans.
(iii) $\cos 29^{\circ}$

Let
$y \quad=f(x)=\operatorname{Cos} x$ with $x=30^{\circ}, \delta x=d x=-1^{\circ}$

$$
=-1 \times \frac{\pi}{180}=-0.0174
$$

$$
\begin{aligned}
\mathrm{dy} & =\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx} \\
& =-\sin \mathrm{x} \mathrm{dx} \\
& =-\sin 30^{\circ} \times(-0.0174) \\
\mathrm{dy} & =0.0087 \\
\mathrm{f}(\mathrm{x}) & =\cos \mathrm{x} \\
\mathrm{f}\left(30^{\circ}\right) & =\cos 30^{\circ} \\
& =0.8660
\end{aligned}
$$

Using

$d y=f^{\prime}(x) d x$
$=\cos x d x$
$=\cos 60^{\circ} \times 0.0174$
$\mathrm{dy}=0.0087$
$\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$
$f\left(60^{\circ}\right)=\sin 60^{\circ}$
$=0.8660$
Using
$\mathrm{f}(\mathrm{x}+\delta \mathrm{x}) \approx \mathrm{f}(\mathrm{x})+\mathrm{dy}$
$\mathrm{f}\left(60^{\circ}+1^{\circ}\right) \approx \mathrm{f}\left(60^{\circ}\right)+\mathrm{dy}$
$\mathrm{f}\left(61^{\circ}\right) \quad \approx 0.8660+0.0087$
Sin61 ${ }^{\circ} \approx 0.8747$ Ans.
Q. 4 Find the approximate increase in the volume of a cube if the length of its each edge changes from 5 to 5.02

Solution:

Let x be the each edge of cube. Since the length of each edge changes from 5 to 5.02

$$
\begin{aligned}
\therefore \quad x & =5, d x=\delta x=5.02-5 \\
& =0.02
\end{aligned}
$$

Volume of cube $=V=x \times x \times x$
$V=x^{3}$
$\mathrm{dv}=3 \mathrm{x}^{2} \mathrm{dx}$
$\mathrm{dv}=3(5)^{2}(0.02)$
$\mathrm{dv}=1.5$ cubic unit
Increase in volume $=d v=1.5$ cubic unit
Q. 5 Find the approximate increase in the area of a circular disc if its diameter is increased from 44 cm to 44.4 cm
Solution:
Let r be the radius of circular disc. Since diameter increased from 44 cm to 44.4 cm so radius is

$$
\begin{aligned}
& \frac{44}{2} \mathrm{~cm}
\end{aligned} \text { to } \frac{44.4}{2} \mathrm{~cm} \quad \text { and } \begin{aligned}
22 \mathrm{~cm} & \text { to } 22.2 \mathrm{~cm} \\
& =22 \mathrm{~cm}, \quad \begin{aligned}
\mathrm{dr} & =\delta \mathrm{r}=22.2-22 \\
\mathrm{r} & =0.2 \mathrm{~cm} \\
\mathrm{dA} & =\pi \mathrm{d}\left(\mathrm{r}^{2}\right) \\
\mathrm{dA} & =2 \pi \mathrm{rdr} \\
& =2 \pi(22)(0.2) \\
& =27.467 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

$\therefore \quad$ Increase in area $=\mathrm{dA}=27.467 \mathrm{~cm}^{2} \quad$ Ans.

EXERCISE 3.2

Q. 1 Evaluate the following indefinite integrals

