$$
\mathrm{A}=1
$$

To find B

$$
\text { Put } \quad \begin{aligned}
2+\mathrm{t} & =0 \\
\mathrm{t} & =-2 \text { in equation }(2) \\
1 & =\mathrm{B}(1-2) \\
-\mathrm{B} & =1 \\
\mathrm{~B} & =-1
\end{aligned}
$$

$\therefore \quad$ From equation (1)

$$
\frac{1}{(1+t)(2+t)}=\frac{1}{1+t}+\frac{-1}{2+t}
$$

Integrate from 0 to 1
$\int_{0}^{1} \frac{\mathrm{dt}}{(1+\mathrm{t})(2+\mathrm{t})}=\int_{0}^{1} \frac{\mathrm{dt}}{1+\mathrm{t}}-\int_{0}^{1} \frac{\mathrm{dt}}{2+\mathrm{t}}$

$$
\begin{aligned}
& \left.=[\ln |1+t|]_{0}^{1}-[\ln |2+t|]\right]_{\theta}^{1} \\
& =(\ln 2-\ln 1)-(\ln 3-\ln 2) \\
& =\ln 2-\ln 3+\ln 2 \\
& =\ln \frac{2 \times 2}{3}=\ln \frac{4}{3} \quad \text { Ans }
\end{aligned}
$$

EXERCISE 3.7

Q. 1 Find the area between the x-axis and the curve $y=x^{2}+1$ from $x=1$ to $x=2$ (Lhr. Board 2005, 2008)

Solution:

$$
y=x^{2}+1 \text { from } x=1 \text { to } x=2
$$

Required area $=\iint^{b} y d x$

$$
\begin{aligned}
& =\int_{1}^{2}\left(x^{2}+1\right) d x \\
& =\int_{1}^{2} x^{2} d x+\int_{1}^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{1}^{2}+[x]_{1}^{2}
\end{aligned}
$$

$$
=\frac{1}{3}(8-1)+(2-1)=\frac{7}{3}+1=\frac{7+3}{3}=\frac{10}{3} \text { sq. units Ans. }
$$

Q. 2 Find the area, above the x-axis and under the curve $y=5-x^{2}$ from $x=-1$ to $x=2$. (Lhr. Board 2011)

Solution:

$$
\begin{aligned}
y & =5-x^{2} \text { from } x=-1 \text { to } x=2 \\
\text { Required area } & =\int_{a}^{b} y d x \\
& =\int_{-1}^{2}\left(5-x^{2}\right) d x \\
& =5 \int_{-1}^{2} d x-\int_{-1}^{2} x^{2} d x \\
& =5[x]_{-1}^{2}-\left[\frac{x^{3}}{3}\right]_{-1}^{2} \\
& =5(2+1)-\frac{1}{3}(8+1)=5(3)-\frac{1}{3}(9)=15-3=12 \text { sq. units }
\end{aligned}
$$

Q. 3 Find the area below the curve $y=3 \sqrt{x}$ and above the x-axis between $x=1$ and $x=4$.

Solution:

$$
\begin{aligned}
\mathrm{y} & =3 \sqrt{\mathrm{x}} \\
\text { Required area } & =\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{ydx} \\
& =\int_{1}^{4} 3 \sqrt{\mathrm{x}} \mathrm{dx} \\
& =3 \int^{4} \mathrm{x}^{1 / 2} \mathrm{dx} \\
& =3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4} \\
& =2\left[4^{\frac{3}{2}}-1^{\frac{3}{2}}\right] \\
& =2\left[\left(2^{2}\right)^{\frac{3}{2}}-1\right]=2(8-1)=2(7)=14 \text { Sq. units }
\end{aligned}
$$

Q. 4 Find the area bounded by \cos function from $x=\frac{-\pi}{2}$ to $x=\frac{\pi}{2}$. (Guj. Board 2008)

Solution:

$$
y \quad=\cos x
$$

Required area $=\int_{a}^{b} y d x=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos x d x$

$$
=[\sin x]_{\frac{-\pi}{2}}^{\frac{\pi}{2}}
$$

$$
=\sin \frac{\pi}{2}-\sin \left(\frac{-\pi}{2}\right)
$$

$$
=1+1
$$

$$
=2 \text { Sq. units }
$$

Ans.
Q. 5 Find the area between the x-axis and the curve $y=4 x-x^{2}$
(Lhr. Board 2009, Guj Board 2005, 2008)

Solution:

y

$$
=4 x-x^{2}
$$

To find the limits
Put $y=0$

$$
x(4-x)=0
$$

Either

$$
\begin{aligned}
\mathrm{x}=0 \quad \text { or } \quad 4-\mathrm{x} & =0 \\
\mathrm{x} & =4
\end{aligned}
$$

The curve cuts the x-axis at $(0,0)$ and $(4,0)$

$$
\mathrm{y} \quad \geq 0 \quad \text { for } \quad 0 \leq \mathrm{x} \leq 4
$$

That is, the area in the interval $[0,4]$ is above the x -axis.

$$
\begin{aligned}
\text { Required Area } & =\int_{a}^{b} y d x \\
& =\int_{0}^{4}\left(4 x-x^{2}\right) d x \\
& =4 \int_{0}^{4} x d x-\int_{0}^{4} x^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& =4\left[\frac{\mathrm{x}^{2}}{2}\right]_{0}^{4}-\left[\frac{\mathrm{x}^{3}}{3}\right]_{0}^{4} \\
& =2(16-0)-\frac{1}{3}(64-0) \\
& =32-\frac{64}{3}=\frac{96-64}{3} \\
& =\frac{32}{3} \text { Sq. units } \quad \text { Ans. }
\end{aligned}
$$

Q. 6 Determine the area bounded by the parabola $y=x^{2}+2 x-3$ and the x-axis

Solution:

$$
y=x^{2}+2 x-3
$$

To find the limits
Put

$$
\begin{aligned}
& y=0 \\
& x^{2}+2 x-3=0 \\
& x^{2}+3 x-x-3=0 \\
& x(x+3)-1(x+3)=0 \\
& (x+3)(x-1)=0 \\
& x+3=0 \quad \text { or } \quad x-1=0 \\
& x \quad=-3
\end{aligned}
$$

Either

The curve cuts the x-axis at $(-3,0)$ and $(1,0)$

$$
\mathrm{y} \leq 0 \quad \text { for } \quad-3 \leq \mathrm{x} \leq 1
$$

That is, the area in the interval $[-3,1]$ is below the x-axis

$$
\begin{aligned}
\text { Required Area } & =-\int_{a}^{b} y d x \\
& =-\int_{-3}^{1}\left(x^{2}+2 x-3\right) d x \\
& =-\int_{-3}^{1} x^{2} d x-2 \int_{-3}^{1} x d x+3 \int_{-3}^{1} d x \\
& =-\left[\frac{x^{3}}{3}\right]_{-3}^{1}-2\left[\frac{x^{2}}{2}\right]_{-3}^{1}+3[x]_{-3}^{1} \\
& =\frac{-1}{3}(1+27)-(1-9)+3(1+3)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-28}{3}-(-8)+3(4) \\
& =\frac{-28}{3}+8+12=\frac{-28}{3}+20 \\
& =\frac{-28+60}{3}=\frac{32}{3} \text { Sq. units }
\end{aligned}
$$

Ans.
Q. 7 Find the area bounded by the curve $y=x^{3}+1$, the x-axis and line $x=2$.

Solution:

$$
y=x^{3}+1
$$

To find the limits
Put

$$
\begin{aligned}
& y=0 \\
& x^{3}+1=0 \\
& (x)^{3}+(1)^{3}=0 \\
& (x+1)\left(x^{2}-x+1\right)=0
\end{aligned}
$$

Either

$$
\begin{array}{ll}
x+1=0 & \text { or } \\
x=-1 & \text { Neglecting because it has imaginary roots, }
\end{array}
$$

Required Area $=\int_{a}^{b} y d x$

$$
\begin{aligned}
& =\int_{-1}^{2}\left(x^{3}+1\right) d x a=1 \\
& =\int_{-1}^{2} x^{3} d x+\int_{-1}^{2} d x \\
& =\left[\frac{x^{4}}{4}\right]_{-1}^{2}+[x]_{-1}^{2} \\
& =\frac{1}{4}(16-1)+(2+1) \\
& =\frac{15}{4}+3 \\
& =\frac{15+12}{4}=\frac{27}{4} \text { Sq. units } \quad \text { Ans. }
\end{aligned}
$$

Q. 8 Find the area bounded by the curve $y=x^{3}-4 x$ and the x-axis.

Solution:

$$
y=x^{3}-4 x
$$

To find the limits
Put

$$
\begin{aligned}
& y=0 \\
& x^{3}-4 x=0 \\
& x\left(x^{2}-4\right)=0 \\
& x(x+2)(x-2)=0
\end{aligned}
$$

Either

$$
\begin{aligned}
\mathrm{x}=0 & \text { or } & \mathrm{x}+2 & =0 & \text { or } & \mathrm{x}-2
\end{aligned}=0 \text { } \begin{aligned}
\mathrm{x} & =-2
\end{aligned}
$$

The curve cuts the x -axis at $(-2,0),(0,0)$ and $(2,0)$

$$
\mathrm{y} \quad \geq 0 \quad \text { for } \quad-2 \leq \mathrm{x} \leq 0
$$

That is, the area in the interval $[-2,0]$ is above the x -axis.

$$
\mathrm{y} \quad \leq 0 \quad \text { for } \quad 0 \leq \mathrm{x} \leq 2
$$

That is, the area in the interval $[0,2]$ lies below the x-axis

$$
\begin{aligned}
\text { Required Area } & =\int_{-2}^{0} y d x-\int_{0}^{2} y d x \\
& =\int_{-2}^{0}\left(x^{3}-4 x\right) d x-\int_{0}^{2}\left(x^{3} 4 x\right) d x \\
& =\int_{-2}^{0} x^{3} d x-4 \int_{0}^{0} x d x-\int_{0}^{2} x^{3} d x+4 \int_{0}^{2} x d x \\
& =\left[\frac{x^{4}}{4}\right]_{-2}^{0}-4\left[\frac{x^{2}}{2}\right]_{-2}^{0}-\left[\frac{x^{4}}{4}\right]_{0}^{2}+4\left[\frac{x^{2}}{2}\right]_{0}^{2} \\
& =\frac{1}{4}(0-16)-2(0-4)-\frac{1}{4}(16-0)+2(4-0) \\
& =\frac{-16}{4}-2(-4)-\frac{1}{4}(16)+8 \\
& =-4+8-4+8 \\
& =8 \text { Sq. units Ans. }
\end{aligned}
$$

Q. 9 Find the area between the curve $y=x(x-1)(x+1)$ and the x-axis.

Solution:

$$
y=x(x-1)(x+1)
$$

To find the limits
Put

$$
\begin{gathered}
y=0 \\
x(x-1)(x+1)=0
\end{gathered}
$$

Either

$$
\begin{array}{ccc}
\mathrm{x}=0
\end{array} \text { or } \quad \begin{aligned}
& \mathrm{x}-1=0 \\
& \mathrm{x}=1
\end{aligned} \quad \text { or } \quad \begin{aligned}
& \mathrm{x}+1=0 \\
& \mathrm{x}=-1
\end{aligned}
$$

The curve cuts the x-axis at $(-1,0),(0,0)$ and $(1,0)$

$$
\mathrm{y} \quad \geq 0 \quad \text { for }-1 \leq \mathrm{x} \leq 0
$$

That is, the area in the interval $[-1,0]$ lies above the x -axis.

$$
\mathrm{y} \quad \leq 0 \quad \text { for } 0 \leq \mathrm{x} \leq 1
$$

That is, the area in the interval $[0,1]$ lies below the x -axis.

$$
\begin{aligned}
\text { Required Area } & =\int_{-1}^{0} y d x-\int_{0}^{1} y d x \\
& =\int_{-1}^{0} x(x-1)(x+1) d x-\int_{0}^{1} x(x-1)(x+1) d x \\
& =\int_{-1}^{0} x\left(x^{2}-1\right) d x-\int_{0}^{1} x\left(x^{2}-1\right) d x \\
& =\int_{-1}^{0}\left(x^{3}-x\right) d x-\int_{0}^{1}\left(x^{3}-x\right) d x \\
& =\int_{-1}^{0} x^{3} d x-\int_{-1}^{0} x d x-\int_{0}^{1} x^{3} d x+\int_{0}^{1} x d x \\
& \left.=\left[\frac{x^{4}}{4}\right]_{-1}^{0}-\left[\frac{x^{2}}{2}\right]_{-1}^{0}-\frac{x^{4}}{4}\right]_{0}^{1}+\left[\frac{x^{2}}{2}\right]_{0}^{1} 0 \\
& =\frac{1}{4}(0-1)-\frac{1}{2}(0-1)-\frac{1}{4}(1-0)+\frac{1}{2}(1-0) \\
& =\frac{-1}{4}+\frac{1}{2}-\frac{1}{4}+\frac{1}{2} \\
& =\frac{-1+2-1+2}{4}=\frac{2}{4}=\frac{1}{2} \text { Sq. units }
\end{aligned}
$$

Q. 10 Find the area above the x-axis bounded by the curve $y^{2}=3-x$ from $x=-1$ to $\mathrm{x}=2$.

Solution:

$$
\begin{aligned}
& y^{2}=3-x \\
& y=\sqrt{3-x} \\
& \text { Required Area }=\int_{a}^{b} y=-1 \text { to } x=2 \\
& \text { } y d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-1}^{2} \sqrt{3-x} d x=-\int_{-1}^{2}(3-x)^{1 / 2} .-d x \\
& =-\left[\frac{(3-x)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{-1}^{2} \\
& =\frac{-2}{3}\left[(3-2)^{\frac{3}{2}}-(3+1)^{\frac{3}{2}}\right] \\
& =\frac{-2}{3}\left[(1)^{\frac{3}{2}}-(4)^{\frac{3}{2}}\right] \\
& =\frac{-2}{3}\left[1-\left(2^{2}\right)^{\frac{3}{2}}\right] \\
& =\frac{-2}{3}(1-8) \\
& =\frac{-2}{3}(-7)=\frac{14}{3} \text { Sq. units }
\end{aligned}
$$

Q. 11 Find the area between the x-axis and the curve $y=\cos \frac{1}{2} x$ from $x=-\pi$ to π.

Solution:

$$
\begin{aligned}
y & =\cos \frac{1}{2} x \quad \text { from } x=-\pi \text { to } x=\pi \\
\text { Required Area } & =\int_{a}^{b} y d x \\
& =\int_{-\pi}^{\pi} \cos \frac{1}{2} x d x \\
& =\left[\frac{\sin \frac{x}{2}}{\frac{1}{2}}\right]_{-\pi}^{\pi} \\
& =2\left[\sin \frac{\pi}{2}-\sin \left(-\frac{\pi}{2}\right)\right] \\
& =2(1+1) \\
& =2(2) \\
& =4 \text { Sq. units } \quad \text { Ans. }
\end{aligned}
$$

Q. 12 Find the area between the x-axis and the curve $y=\sin 2 x$ from $x=0$ to $x=\frac{\pi}{3}$.

Solution:

$$
\begin{aligned}
y & =\sin 2 x \quad \text { from } x=0 \quad \text { to } x=\frac{\pi}{3} \\
\text { Required Area } & =\int_{a}^{b} y d x \\
& =\int_{0}^{\frac{\pi}{3}} \sin 2 x d x \\
& =\left[\frac{-\cos 2 x}{2}\right]_{0}^{\frac{\pi}{3}} \\
& =\frac{-1}{2}\left[\cos 2\left(\frac{\pi}{3}\right)-\cos 2(0)\right] \\
& =\frac{-1}{2}\left[\frac{-1}{2}-1\right] \\
& =\frac{-1}{2}\left(\frac{-1-2}{2}\right) \\
& =\frac{-1}{2}\left(\frac{-3}{2}\right) \\
& =\frac{3}{4} \text { Sq. units }
\end{aligned}
$$

Q. 13 Find the area between the x-axis and the curve $y=\sqrt{2 a x-x^{2}}$ when $a>0$.

Solution:

$$
y=\sqrt{2 a x-x^{2}}
$$

To find the limits
Put

$$
\begin{aligned}
y & =0 \\
\sqrt{2 a x-x^{2}} & =0 \\
2 \mathrm{ax}-\mathrm{x}^{2}= & 0 \\
\mathrm{x}(2 \mathrm{a}-\mathrm{x})= & 0
\end{aligned}
$$

Either

$$
\begin{array}{rlrl}
x \quad \text { or } & & 2 \mathrm{a}-\mathrm{x} & =0 \\
x & =2 \mathrm{a}
\end{array}
$$

$$
\begin{aligned}
\text { Required Area } & =\int_{a}^{b} y d x \\
& =\int_{0}^{2 a} \sqrt{2 a x-x^{2}} d x \\
& =\int_{0}^{2 a} \sqrt{a^{2}-a^{2}+2 a x-x^{2}} d x \\
& =\int_{0}^{2 a} \sqrt{a^{2}-\left(a^{2}-2 a x+x^{2}\right)} d x \\
& =\int_{0}^{2 a} \sqrt{a^{2}-(a-x)^{2}} d x
\end{aligned}
$$

Put

$$
a-x=a \sin \theta
$$

$$
-\mathrm{dx}=\mathrm{a} \cos \theta \mathrm{~d} \theta
$$

$$
\mathrm{dx}=-\mathrm{a} \cos \theta \mathrm{~d} \theta
$$

When $x=0$,

When

$$
\begin{gathered}
x=2 a, \quad a-2 a=a \sin \theta \\
-a=\frac{a \sin \theta}{\sin \theta}=\frac{-a}{a}=-1 \\
\theta=\frac{-\pi}{2} \\
=\quad \int_{\frac{\pi}{2}}^{\frac{-\pi}{2}} \sqrt{a^{2}-a^{2} \sin ^{2} \theta}(-a \cos \theta) d \theta \\
=\quad-a \int^{\frac{-\pi}{2}} \sqrt{a^{2}\left(1-\sin ^{2} \theta\right)} \cos \theta d \theta \\
=\quad a \int^{\frac{\pi}{2}} a \sqrt{\cos ^{2} \theta} \cdot \cos \theta d \theta
\end{gathered}
$$

$$
\begin{aligned}
& =a^{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos \theta \cdot \cos \theta d \theta \\
& =a^{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \\
& =a^{2} \int^{\frac{\pi}{2}}\left(\frac{1+\cos 2 \theta}{2}\right) d \theta \\
& =\frac{a^{2}}{2} \int^{\frac{-\pi}{2}}(1+\cos 2 \theta) d \theta \\
& =\frac{a^{2}}{2} \int^{\frac{-\pi}{2}} d \theta+\frac{a^{2}}{2} \int^{\frac{\pi}{2}} \cos 2 \theta d \theta \frac{a^{2}}{2} \\
& =\frac{a^{2}}{2}[\theta] \frac{\pi}{2} \\
& \left.\left.=\frac{a^{2}}{2}\left[\frac{\pi}{2}+\frac{a^{2}}{2}\left[\frac{\pi}{2}\right]+\frac{a^{2}}{4}[\sin 2 \theta] \frac{\frac{\pi}{2}}{2}\right]_{\frac{\pi}{2}}^{2}=\frac{\pi}{2}\right)-\sin 2\left(\frac{-\pi}{2}\right)\right] \\
& =\frac{a^{2}}{2}\left(\frac{\pi+\pi}{2}\right)+\frac{a^{2}}{4}(0+0) \\
& =\frac{a^{2}}{2}\left(\frac{2 \pi}{2}\right) \\
& =\frac{a^{2} \pi}{2} \operatorname{Sq} \cdot u n i t s
\end{aligned}
$$

EXERCISE 3.8

Q. 1 Check that each of the following equations written against the differential equation in its solution.
(i) $\quad \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}=1+\mathrm{y} \quad \mathrm{y}=\mathrm{cx}-1$

