315

To find B

Put
$$2 + t = 0$$

 $t = -2$ in equation (2)
 $1 = B (1 - 2)$
 $-B = 1$
 $B = -1$

 \therefore From equation (1)

$$\frac{1}{(1+t)(2+t)} = \frac{1}{1+t} + \frac{-1}{2+t}$$

Integrate from 0 to 1

$$\int_{0}^{1} \frac{dt}{(1+t)(2+t)} = \int_{0}^{1} \frac{dt}{1+t} - \int_{0}^{1} \frac{dt}{2+t}$$

$$= [ln |1+t|]_{0}^{1} - [ln |2+t|]_{0}^{1}$$

$$= (ln2 - ln1) - (ln 3 - ln2)$$

$$= ln 2 - ln3 + ln2$$

$$= ln \frac{2 \times 2}{3} = ln \frac{4}{3}$$
Ans
EXERCISE 3.7

Q.1 Find the area between the x-axis and the curve $y = x^2 + 1$ from x = 1 to x = 2(Lhr. Board 2005, 2008)

y =
$$x^2 + 1$$
 from x = 1 to x = 2
Required area = $\int_{a}^{b} y \, dx$
= $\int_{1}^{a} (x^2 + 1) dx$
= $\int_{1}^{2} x^2 \, dx + \int_{1}^{2} dx$
= $\left[\frac{x^3}{3}\right]_{1}^{2} + [x]_{1}^{2}$

$$=\frac{1}{3}(8-1)+(2-1)=\frac{7}{3}+1=\frac{7+3}{3}=\frac{10}{3}$$
 sq. units Ans.

Q.2 Find the area, above the x-axis and under the curve $y = 5 - x^2$ from x=-1 to x = 2. (Lhr. Board 2011)

Solution:

y =
$$5 - x^2$$
 from x = -1 to x = 2
Required area = $\int_{-1}^{b} y \, dx$
= $\int_{-1}^{2} (5 - x^2) \, dx$
= $5 \int_{-1}^{2} dx - \int_{-1}^{2} x^2 \, dx$
= $5 [x]_{-1}^{2} - [\frac{x^3}{3}]_{-1}^{2}$
= $5 (2 + 1) - \frac{1}{3} (8 + 1) = 5 (3) - \frac{1}{3} (9) = 15 - 3 = 12$ sq. units

Q.3 Find the area below the curve $y = 3\sqrt{x}$ and above the x-axis between x = 1 and x = 4.

y =
$$3\sqrt{x}$$

Required area = $\int_{1}^{b} y \, dx$
= $\int_{1}^{a} 3 \sqrt{x} \, dx$
= $3\int_{1}^{4} x^{\frac{1}{2}} \, dx$
= $3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4}$
= $2\left[4^{\frac{3}{2}} - 1^{\frac{3}{2}}\right]$
= $2\left[(2^{2})^{\frac{3}{2}} - 1\right] = 2(8-1) = 2(7) = 14$ Sq. units

Q.4 Find the area bounded by cos function from $x = \frac{-\pi}{2}$ to $x = \frac{\pi}{2}$. (Guj. Board 2008)

y = cosx
Required area =
$$\int_{a}^{b} y \, dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx$$

$$= [\sin x]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \sin \frac{\pi}{2} - \sin \left(\frac{-\pi}{2}\right)$$

$$= 1 + 1$$

$$= 2 \text{ Sq. units} \quad \text{Ans.}$$
Q.5 Find the area between the x-axis and the curve $y = 4x - x^{2}$
(Lhr. Board 2009, Guj Board 2005, 2008)
Solution:
y = 4x - x^{2}
To find the limits
Put y = 0
4x - x^{2} = 0
x (4 - x) = 0
Either
x = 0 \quad \text{or} \quad 4 - x = 0
x = 4
The curve cuts the x-axis at (0, 0) and (4, 0)
y \ge 0 \quad \text{for} \quad 0 \le x \le 4
That is, the area in the interval [0, 4] is above the x-axis.
Required Area =
$$\int_{0}^{b} y \, dx$$

$$= \int_{0}^{a} (4x - x^{2}) \, dx$$

$$= 4\int_{0}^{4} x \, dx - \int_{0}^{4} x^{2} dx$$

$$= 4 \left[\frac{x^2}{2} \right]_0^4 - \left[\frac{x^3}{3} \right]_0^4$$

= 2 (16 - 0) - $\frac{1}{3}$ (64 - 0)
= 32 - $\frac{64}{3}$ = $\frac{96 - 64}{3}$
= $\frac{32}{3}$ Sq. units Ans.

Q.6 Determine the area bounded by the parabola $y = x^2 + 2x - 3$ and the x-axis *Solution:*

y =
$$x^2 + 2x - 3$$

To find the limits
Put
y = 0
 $x^2 + 2x - 3 = 0$
 $x^2 + 3x - x - 3 = 0$
 $x (x + 3) - 1 (x + 3) = 0$
 $(x + 3) (x - 1) = 0$
Either
x + 3 = 0 or x - 1 = 0
x = -3
The curve cuts the x-axis at (-3, 0) and (1, 0)
y ≤ 0 for $-3 \leq x \leq 1$
That is, the area in the interval [-3, 1] is below the x-axis
Required Area = $-\int_{-3}^{b} y \, dx$
 $= -\int_{-3}^{1} (x^2 + 2x - 3) \, dx$
 $= -\int_{-3}^{1} x^2 \, dx - 2 \int_{-3}^{1} x \, dx + 3 \int_{-3}^{1} dx$
 $= -\left[\frac{x^3}{3}\right]_{-3}^{1} - 2\left[\frac{x^2}{2}\right]_{-3}^{1} + 3 [x]_{-3}^{1}$
 $= \frac{-1}{3} (1 + 27) - (1 - 9) + 3 (1 + 3)$

$$= \frac{-28}{3} - (-8) + 3(4)$$

= $\frac{-28}{3} + 8 + 12$ = $\frac{-28}{3} + 20$
= $\frac{-28 + 60}{3}$ = $\frac{32}{3}$ Sq. units Ans.

Q.7 Find the area bounded by the curve $y = x^3 + 1$, the x-axis and line x = 2. Solution:

 $= x^3 + 1$ y To find the limits Put y = 0 $x^{3} + 1 = 0$ (x)³ + (1)³ = 0 Either

(x) + (1) = 0
(x + 1) (x² - x + 1) = 0
Either
x + 1 = 0 or x² - x + 1 = 0
x = -1 Neglecting because it has imaginary roots,
Required Area =
$$\int_{a}^{b} y \, dx$$

= $\int_{-1}^{2} (x^3 + 1) \, dx$ ALEEMCITY.COM
= $\int_{-1}^{2} x^3 dx + \int_{-1}^{2} dx$
= $\left[\frac{x^4}{4}\right]_{-1}^{2} + [x]_{-1}^{2}$
= $\frac{1}{4} (16 - 1) + (2 + 1)$
= $\frac{15}{4} + 3$
= $\frac{15 + 12}{4} = \frac{27}{4}$ Sq. units Ans.

Find the area bounded by the curve $y = x^3 - 4x$ and the x-axis. **Q.8** Solution:

$$y = x^3 - 4x$$

To find the limits

y = 0 $x^{3} - 4x = 0$ $x(x^{2} - 4) = 0$ x(x + 2)(x - 2) = 0

Either

$$x = 0$$
 or $x + 2 = 0$ or $x - 2 = 0$
 $x = -2$ $x = 2$

The curve cuts the x-axis at (-2, 0), (0, 0) and (2, 0)

$$y \ge 0 \quad \text{for} \quad -2 \le x \le 0$$

That is, the area in the interval [-2, 0] is above the x-axis.

$$y \qquad \leq \ 0 \qquad for \quad 0 \leq x \ \leq 2$$

That is, the area in the interval [0, 2] lies below the x-axis

Required Area =
$$\int_{-2}^{0} y dx - \int_{0}^{2} y dx$$

= $\int_{-2}^{0} (x^{3} - 4x) dx - \int_{0}^{2} (x^{3} - 4x) dx$
= $\int_{-2}^{0} x^{3} dx - 4 \int_{-2}^{0} x dx - \int_{0}^{2} x^{3} dx + 4 \int_{0}^{2} x dx$
= $\left[\frac{x^{4}}{4}\right]_{-2}^{0} - 4 \left[\frac{x^{2}}{2}\right]_{-2}^{0} - \left[\frac{x^{4}}{4}\right]_{0}^{2} + 4 \left[\frac{x^{2}}{2}\right]_{0}^{2}$
= $\frac{1}{4} (0 - 16) - 2 (0 - 4) - \frac{1}{4} (16 - 0) + 2 (4 - 0)$
= $\frac{-16}{4} - 2 (-4) - \frac{1}{4} (16) + 8$
= $-4 + 8 - 4 + 8$
= 8 Sq. units Ans.

Q.9 Find the area between the curve y = x(x-1)(x+1) and the x-axis. *Solution:*

y = x(x-1)(x+1)To find the limits

Put

$$y = 0$$

x (x - 1) (x + 1) = 0

Either

$$x = 0$$
 or $x - 1 = 0$ or $x + 1 = 0$
 $x = 1$ $x = -1$

The curve cuts the x-axis at (-1,0), (0, 0) and (1, 0)

y
$$\ge 0$$
 for $-1 \le x \le 0$
That is, the area in the interval [-1,0] lies above the x-axis.
y ≤ 0 for $0 \le x \le 1$

$$y \leq 0$$
 for $0 \leq x \leq$

That is, the area in the interval [0, 1] lies below the x-axis.

Required Area =
$$\int_{-1}^{0} y dx - \int_{0}^{1} y dx$$

= $\int_{-1}^{0} x(x-1) (x+1) dx - \int_{0}^{1} x(x-1) (x+1) dx$
= $\int_{-1}^{0} x(x^{2}-1) dx - \int_{0}^{1} x(x^{2}-1) dx$
= $\int_{-1}^{0} (x^{3}-x) dx - \int_{0}^{1} (x^{3}-x) dx$
= $\int_{-1}^{0} x^{3} dx - \int_{-1}^{0} x dx - \int_{0}^{1} x^{3} dx + \int_{0}^{1} x dx$
= $\left[\frac{x^{4}}{4}\right]_{-1}^{0} - \left[\frac{x^{2}}{2}\right]_{-1}^{0} - \left[\frac{x^{4}}{4}\right]_{0}^{1} + \left[\frac{x^{2}}{2}\right]_{0}^{1} COM$
= $\frac{1}{4} (0-1) - \frac{1}{2} (0-1) - \frac{1}{4} (1-0) + \frac{1}{2} (1-0)$
= $\frac{-1}{4} + \frac{1}{2} - \frac{1}{4} + \frac{1}{2}$
= $\frac{-1+2-1+2}{4} = \frac{2}{4} = \frac{1}{2} Sq. units Ans.$

Q.10 Find the area above the x-axis bounded by the curve $y^2 = 3 - x$ from x = -1 to x=2.

Solution:

$$y^2 = 3 - x$$
 from $x = -1$ to $x = 2$
 $y = \sqrt{3 - x}$
Required Area = $\int_{a}^{b} y dx$

321

$$= \int_{-1}^{2} \sqrt{3-x} \, dx = -\int_{-1}^{2} (3-x)^{\frac{1}{2}} \dots dx$$
$$= -\left[\frac{(3-x)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{-1}^{2}$$
$$= \frac{-2}{3} \left[(3-2)^{\frac{3}{2}} - (3+1)^{\frac{3}{2}}\right]$$
$$= \frac{-2}{3} \left[(1)^{\frac{3}{2}} - (4)^{\frac{3}{2}}\right]$$
$$= \frac{-2}{3} \left[1 - (2^{2})^{\frac{3}{2}}\right]$$
$$= \frac{-2}{3} (1-8)$$
$$= \frac{-2}{3} (-7) = \frac{14}{3} \text{ Sq. units} \text{ Ans.}$$

Q.11 Find the area between the x-axis and the curve $y = \cos \frac{1}{2} x$ from $x = -\pi$ to π .

$$y = \cos \frac{1}{2} x$$
 from $x = -\pi \text{ to } x = \pi$
Required Area = $\int_{a}^{b} y dx$

$$= \int_{-\pi}^{\pi} \cos \frac{1}{2} x dx$$

$$= \left[\frac{\sin \frac{x}{2}}{\frac{1}{2}} \right]_{-\pi}^{\pi}$$

$$= 2 \left[\sin \frac{\pi}{2} - \sin \left(-\frac{\pi}{2} \right) \right]$$

$$= 2 (1 + 1)$$

$$= 2 (2)$$

$$= 4$$
 Sq. units Ans.

Q.12 Find the area between the x-axis and the curve $y = \sin 2x$ from x = 0 to $x = \frac{\pi}{3}$. Solution:

y = sin 2x from x = 0 to x =
$$\frac{\pi}{3}$$

Required Area = $\int_{a}^{b} y dx$
= $\int_{0}^{\frac{\pi}{3}} Sin 2x dx$
= $\left[\frac{-\cos 2x}{2}\right]_{0}^{\frac{\pi}{3}}$
= $\frac{-1}{2} \left[\cos 2\left(\frac{\pi}{3}\right) - \cos 2(0)\right]$
= $\frac{-1}{2} \left[\frac{-1}{2} - 1\right]$
= $\frac{-1}{2} \left(\frac{-1-2}{2}\right)$
= $\frac{-1}{2} \left(\frac{-3}{2}\right)$
= $\frac{3}{4}$ Sq. units Ans.

Q.13 Find the area between the x-axis and the curve $y = \sqrt{2ax - x^2}$ when a > 0. *Solution:*

$$y = \sqrt{2ax - x^2}$$

To find the limits

Put

$$y = 0$$

$$\sqrt{2ax - x^2} = 0$$

$$2ax - x^2 = 0$$

$$x (2a - x) = 0$$

Either

$$\begin{array}{rcl} x &= 0 & \text{ or } & 2a - x &= 0 \\ & x &= 2a \end{array}$$

Required Area =
$$\int_{a}^{b} ydx$$

= $\int_{0}^{a} \sqrt{2ax - x^{2}} dx$
= $\int_{0}^{2a} \sqrt{a^{2} - a^{2} + 2ax - x^{2}} dx$
= $\int_{0}^{2a} \sqrt{a^{2} - (a^{2} - 2ax + x^{2})} dx$
= $\int_{0}^{2a} \sqrt{a^{2} - (a - x)^{2}} dx$
Put $a - x = a \sin\theta$
 $-dx = a \cos\theta d\theta$
When $x = 0$, $a - 0 = a \sin\theta$
 $\sin\theta = \frac{a}{a} = 1$
 $\theta = \frac{\pi}{2}$
When $x = 2a$, $a - 2a = a \sin\theta$
 $-a \tau = a - a \sin\theta$
 $\sin\theta = \frac{-a}{a} = -1$
 $\theta = -\frac{\pi}{2}$
= $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{a^{2} - a^{2} \sin^{2}\theta} (-a \cos\theta) d\theta$
= $-a \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{a^{2} (1 - \sin^{2}\theta)} \cos\theta d\theta$
= $a \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} a \sqrt{\cos^{2}\theta} \cdot \cos\theta d\theta$

324

$$= a^{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\theta \cdot \cos\theta \, d\theta$$

$$= a^{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2}\theta \, d\theta$$

$$= a^{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\theta}{2}\right) \, d\theta$$

$$= a^{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \cos 2\theta) \, d\theta$$

$$= \frac{a^{2}}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta + \frac{a^{2}}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 2\theta \, d\theta$$

$$= \frac{a^{2}}{2} \left[\theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{a^{2}}{2} \left[\frac{\sin 2\theta}{2}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \text{EMCITY.COM}$$

$$= \frac{a^{2}}{2} \left[\frac{\pi}{2} + \frac{\pi}{2}\right] + \frac{a^{2}}{4} \left[\sin 2\left(\frac{\pi}{2}\right) - \sin 2\left(-\frac{\pi}{2}\right)\right]$$

$$= \frac{a^{2}}{2} \left(\frac{\pi + \pi}{2}\right) + \frac{a^{2}}{4} (0 + 0)$$

$$= \frac{a^{2}}{2} \left(\frac{2\pi}{2}\right)$$

$$= \frac{a^{2}\pi}{2} \text{ Sq. units } \text{Ans.}$$

Q.1 Check that each of the following equations written against the differential equation in its solution.

(i)
$$x \frac{dy}{dx} = 1 + y$$
 $y = cx - 1$