$$
\begin{aligned}
& =\frac{1}{2}\left|\begin{array}{ccc}
2 & 3 & 1 \\
-1 & 1 & 1 \\
4 & -5 & 1
\end{array}\right| \\
& =\frac{1}{2}\left[2\left|\begin{array}{cc}
1 & 1 \\
-5 & 1
\end{array}\right|-3\left|\begin{array}{cc}
-1 & 1 \\
4 & 1
\end{array}\right|+1\left|\begin{array}{cc}
-1 & 1 \\
4 & -5
\end{array}\right|\right] \\
& =\frac{1}{2}[2(1+5)-3(-1-4)+1(5-4)]
\end{aligned}
$$

$$
=\frac{1}{2} \quad[2(6)-3(-5)+1(1)]
$$

$$
=\frac{1}{2} \quad(12+15+1)
$$

$$
=\frac{28}{2}=14 \quad \text { Square unit Ans. }
$$

Since Area of $\triangle \mathrm{ABC} \neq 0$ so the points are not collinear.

EXERCISE 4.4

Q.1: Find the point of intersection of the lines.

(i) $x-2 y+1=0$
and $2 x-y+2=0$
(ii) $3 x+y+12=0$ and $\quad x+2 y-1=0$
(iii) $x+4 y-12=0$ and $x-3 y+3=0$

Solution:

$$
\text { (i) } \begin{aligned}
x-2 y+1 & =0 \\
2 x-y+2 & =0
\end{aligned}
$$

Let $P(x, y)$ be the point of intersection of given lines.

$$
\begin{array}{rlr}
\frac{\mathrm{x}}{(-2)(2)-1(-1)} & =\frac{-\mathrm{y}}{(1)(2)-1(2)}=\frac{1}{1(-1)-(2)(-2)} \\
\frac{\mathrm{x}}{-4+1}=\frac{-\mathrm{y}}{2-2} & =\frac{1}{-1+4} \\
\frac{\mathrm{x}}{-3} \quad=\frac{-\mathrm{y}}{0} & =\frac{1}{3} \\
\Rightarrow \frac{\mathrm{x}}{-3} \quad=\frac{1}{3} & \text { and } \quad \frac{-\mathrm{y}}{0}=\frac{1}{3}
\end{array}
$$

$$
3 \mathrm{x}=-3
$$

$3 \mathrm{x}=-3$

$$
-3 y=0
$$

$y=\frac{0}{-3}$
$x=\frac{-3}{3}$
$\mathrm{x}=-1$
$\mathrm{y}=0$
$\therefore \mathrm{P}(\mathrm{x}, \mathrm{y})=\mathrm{P}(-1,0)$
Ans
(ii) $3 x+y+12=0$
$x+2 y-1=0$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the point of intersection of given lines.
$\frac{\mathrm{x}}{1(-1)-2(12)}=\frac{-\mathrm{y}}{3(-1)-1(12)}=\frac{1}{3(2)-1(1)}$
$\frac{\mathrm{x}}{-1-24}=\frac{-\mathrm{y}}{-3-12}=\frac{1}{6-1}$
$\begin{array}{cc}\frac{\mathrm{x}}{-25} & =\frac{-\mathrm{y}}{-15} \\ \frac{\mathrm{x}}{-25}=\frac{1}{5} & \text { and } \quad \frac{-\mathrm{y}}{-15}=\frac{1}{5}\end{array}$
$x=\frac{-25}{5} \quad y \quad=\frac{15}{5}$
$x=-5 \quad y=3$
$\therefore \mathrm{P}(\mathrm{x}, \mathrm{y}) \quad=\mathrm{P}(-5,3) \quad$ Ans
(iii) $x+4 y-12=0$
$\mathbf{x}-3 \mathrm{y}+3=0$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the point of intersection of given lines.

$$
\begin{array}{ccc}
\frac{x}{4(3)-(-3)(-12)} & =\frac{-y}{1(3)-1(-12)} & =\frac{1}{1(-3)-4(1)} \\
\begin{array}{cc}
\frac{x}{12-36} & =\frac{-y}{3+12} \\
\frac{x}{-24} & =\frac{-y}{15} \\
=\frac{x}{-24}=\frac{1}{-7} & \text { and } \quad \frac{-y}{15} \\
x=\frac{-24}{-7} & =\frac{1}{-7} \\
x=\frac{y}{-7} &
\end{array} \\
&
\end{array}
$$

$\therefore \mathrm{P}(\mathrm{x}, \mathrm{y}) \quad=\mathrm{P}\left(\frac{24}{7}, \frac{15}{7}\right) \quad$ Ans

Q. 2 Find an equation of the line through

(i) the point $(2,-9)$ and the intersection of the lines $2 x+5 y-8=0$ and $3 x-$ $4 y-6=0$
(ii) the intersection of the lines $x-y-4=0$ and $7 x+y+20=0$ and
(a)Parallel
(b)
Perpendicular
to the line $6 x+y-14=0 \quad$ (Lhr. Board 2009 (S)) (Guj. Board 2005)
(iii) through the intersection of lines $x+2 y+3=0, \quad 3 x+4 y+7=0$ and making equal intercepts on the axes.

Solution:

(i) $2 \mathrm{x}+5 \mathrm{y}-8=0$
$3 x-4 y-6=0$
Let $P(x, y)$ be the point of intersection of given lines.

$$
\begin{array}{cl}
\frac{\mathrm{x}}{5(-6)-(-8)(-4)}=\frac{-\mathrm{y}}{2(-6)-3(-8)} & =\frac{1}{2(-4)-3(5)} \\
\frac{\mathrm{x}}{-30-32}=\frac{-\mathrm{y}}{-12+24} & =\frac{1}{-8-15} \\
\frac{\mathrm{x}}{-62}=\frac{-\mathrm{y}}{12} & =\frac{1}{-23} \\
\Rightarrow \quad \frac{\mathrm{x}}{-62}=\frac{1}{-23} \quad \text { and } \quad \frac{-\mathrm{y}}{12} & =\frac{1}{-23} \\
x=\frac{62}{23} & =\frac{12}{23} \\
\therefore P(x, y) \quad=\quad P\left(\frac{62}{23}, \frac{12}{23}\right)
\end{array}
$$

Equation of the line passing through $(2,-9)$ and $\left(\frac{62}{23}, \frac{12}{23}\right)$ is

$$
\begin{aligned}
& \frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} \\
& \frac{y+9}{\frac{12}{23}+9}=\frac{x-2}{\frac{62}{23}-2} \\
& \frac{y+9}{\frac{12+207}{23}}=\frac{x-2}{\frac{62-46}{23}} \\
& \frac{23(y+9)}{219}=\frac{23(x-2)}{16} \\
& 16(y+9)
\end{aligned}=219(x-2), ~ l
$$

$$
\begin{aligned}
& 16 \mathrm{y}+144=\begin{array}{c}
219 \mathrm{x}-438 \\
0
\end{array}=219 \mathrm{x}-438-16 \mathrm{y}-144 \\
& 219 \mathrm{x}-16 \mathrm{y}-582=0 \quad \text { Ans }
\end{aligned}
$$

(ii) $x-y-4=0$
$\mathbf{7 x}+\mathbf{y}+\mathbf{2 0}=\mathbf{0}$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the point of intersection of given lines.

$$
\begin{aligned}
& \frac{x}{(-1)(20)-1(-4)}=\frac{-y}{1(20)-7(-4)}=\frac{1}{1(1)-7(-1)} \\
& \\
& \frac{x}{-20+4}=\frac{-y}{20+28}=\frac{1}{1+7} \\
& \\
& \frac{x}{-16}=\frac{-y}{48}=\frac{1}{8} \\
& \Rightarrow \\
& =\frac{x}{-16}=\frac{1}{8} \quad \text { and } \quad \frac{-y}{48}=\frac{1}{8} \\
& \\
& x=\frac{-16}{8} \quad y \quad=\frac{-48}{8} \\
& \\
& x=-2 \quad y(x, y)=P(-2,-6)
\end{aligned}
$$

Given line is
$6 x+y-14=0$
Let m_{1} be the slope of given line and m_{2} be the slope of required line.
$m_{1}=-\frac{6}{1}=-6$
(a) Since the given line and the required line is parallel.
$\therefore \mathrm{m}_{1}=\mathrm{m}_{2}$
$m_{2}=-6$
Equation of line passing through $(-2,-6)$ and having slope $m_{2}=-6$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}_{2}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y+6=-6(x+2)$
$y+6=-6 x-12$
$6 x+y+6+12=0$
$6 x+y=0$
(b)Since the given line and the required line is perpendicular.

$$
\begin{aligned}
\therefore \mathrm{m}_{1} \times \mathrm{m}_{2} & =-1 \\
-6 \times \mathrm{m}_{2} & =-1
\end{aligned}
$$

$$
m_{2}=\frac{-1}{-6}=\frac{1}{6}
$$

Equation of line passing through $(-2,-6)$ and having slope $m_{2}=\frac{1}{6}$ is

$$
\begin{aligned}
& y-y_{1}=m_{2}\left(x-x_{1}\right) \\
& y+6 \quad=\frac{1}{6}(x+2) \\
& 6 y+36=x+2 \\
& 0 \quad=x+2-6 y-36 \\
& x-6 y-34=0 \\
& x-2 y+3
\end{aligned}
$$

Let $P(x, y)$ be the point of intersection of given lines.
$\frac{\mathrm{x}}{2(7)-3(4)}=\frac{-\mathrm{y}}{1(7)-3(3)}=\frac{1}{1(4)-2(3)}$

$$
\frac{x}{14-12}=\frac{-y}{7-9} \quad=\frac{1}{4-6}
$$

$$
\frac{x}{2}=\frac{-y}{-2}=\frac{1}{-2}
$$

$$
\Rightarrow \frac{x}{2}=\frac{1}{-2} \quad \text { and } \quad \frac{-y}{-2}=\frac{1}{-2}
$$

$$
x=\frac{2}{-2} \quad y \quad=\frac{2}{-2}
$$

$$
\begin{array}{ll}
\mathrm{x}=-1 & \mathrm{y}
\end{array}=-1
$$

$\therefore \mathrm{P}(\mathrm{x}, \mathrm{y})=\mathrm{P}(-1,-1)$
Equation of line passing through $\mathrm{P}(-1,-1)$ and having slope m is

$$
\begin{align*}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+1=m(x+1) \\
& y+1=m x+m \\
& y-m x+1-m=0 \tag{1}
\end{align*}
$$

x-intercept

$$
\begin{align*}
& \text { Put } \mathrm{y}=0 \quad \text { in equation } \tag{1}\\
& 0-\mathrm{mx}+1-\mathrm{m}=0 \\
& 1-\mathrm{m}=\mathrm{mx} \\
& \mathrm{x}=\frac{1-\mathrm{m}}{\mathrm{~m}}
\end{align*}
$$

y-intercept

Put $\mathrm{x}=0 \quad$ in equation
$\mathrm{y}+1-\mathrm{m}=0$
$\mathrm{y} \quad=\mathrm{m}-1$

Since x - intercept $=\mathrm{y}$ intercept

$$
\begin{aligned}
& \frac{1-\mathrm{m}}{\mathrm{~m}}=\mathrm{m}-1 \\
& 1-\mathrm{m}=\mathrm{m}^{2}-\mathrm{m} \\
& 1=\mathrm{m} 2-\mathrm{m}+\mathrm{m} \\
& \mathrm{~m}^{2}=1 \\
& \mathrm{~m}= \pm 1
\end{aligned}
$$

Put $m=1$ in eq. (1)

$$
\begin{gathered}
y-x+1-1=0 \\
y-x=0 \\
y=x
\end{gathered}
$$

This equation passing through origin and having no intercepts on the axes. So we neglect it.
Q. 3 Find an equation of the line through the intersection of $16 x-10 y-33=$ $0 ; 12 x+14 y+29=0$ and the intersection of $x-y+4=0 ; x-7 y+2=0$

Solution:

$$
\begin{aligned}
& 16 x-10 y-33=0 \\
& 12 x+14 y+29=0
\end{aligned}
$$

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the point of intersection of above lines.

$$
\begin{array}{rll}
\frac{\mathrm{x}}{(-10)(29)-14(-33)} & =\frac{-\mathrm{y}}{16(29)-12(-33)} & =\frac{1}{16(14)-12(-10)} \\
\frac{\mathrm{x}}{-290+462} & =\frac{-\mathrm{y}}{464+396} & =\frac{1}{224+120} \\
\frac{\mathrm{x}}{172}=\frac{-\mathrm{y}}{860} \quad= & \frac{1}{344} \\
=\frac{\mathrm{x}}{172}=\frac{1}{344}, \frac{-\mathrm{y}}{860}=\frac{1}{344} & \\
x=\frac{172}{344} & y & =\frac{-860}{344} \\
x=\frac{1}{2} & y & \\
& =\frac{-5}{2}
\end{array}
$$

$$
\begin{aligned}
\therefore & P(x, y)=P\left(\frac{1}{2}, \frac{-5}{2}\right) \\
& x-y+4=0 \quad x-7 y+2=0
\end{aligned}
$$

Let $P_{1}(x, y)$ be the point of intersection of above lines.
$\frac{x}{(-1)(2)-4(-7)}=\frac{-y}{1(2)-1(4)}=\frac{1}{1(-7)-1(-1)}$
$\frac{x}{-2+28}=\frac{-y}{2-4}=\frac{1}{-7+1}$
$\frac{x}{26}=\frac{-y}{-2}=\frac{1}{-6}$
$=>\frac{x}{26} \quad=\frac{1}{-6} \quad$ and $\quad \frac{-y}{-2} \quad=\frac{1}{-6}$
$x=\frac{-26}{6} \quad y=\frac{2}{-6}$
$x=\frac{-13}{3}$
$y=\frac{-1}{3}$
$\therefore P_{1}(x, y)=P_{1}\left(\frac{-13}{3}, \frac{-1}{3}\right)$
Equation of line passing through $\left(\frac{1}{2}, \frac{-5}{2}\right)$ and $\left(\frac{-13}{3}, \frac{-1}{3}\right)$ is
$\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{2}-\mathrm{y}_{1}}=\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$
$\frac{y+\frac{5}{2}}{\frac{-1}{3}+\frac{5}{2}}=\frac{x-\frac{1}{2}}{\frac{-13}{3}-\frac{1}{2}}$
$\frac{\frac{2 y+5}{2}}{\frac{-2+15}{6}}=\frac{\frac{2 x-1}{2}}{\frac{-26-3}{6}}$
$\frac{6(2 y+5)}{2(13)}=\frac{6(2 x-1)}{2(-29)}$
$-29(2 \mathrm{y}+5)=13(2 \mathrm{x}-1)$
$-58 y-145=26 x-13$
$0=26 x-13+58 y+145$
$26 x+58 y+132=0$
$2(13 \mathrm{x}+29 \mathrm{y}+66)=0 \quad 13 \mathrm{x}+29 \mathrm{y}+66=0$
Ans
Q.4: Find the condition that the lines $y=m_{1} x+c_{1} ; \quad y=m_{2} x+c_{2}$ and $y=$ $m_{3} \mathrm{X}+\mathrm{c}_{3}$ are concurrent. (Lhr. Board 2007)

Solution:

```
\(\mathrm{y}=\mathrm{m}_{1} \mathrm{X}+\mathrm{c}_{1}\)
\(\mathrm{y}=\mathrm{m}_{2} \mathrm{X}+\mathrm{c}_{2}\)
\(\mathrm{y}=\mathrm{m}_{3} \mathrm{x}+\mathrm{c}_{3}\)
\(\mathrm{m}_{1} \mathrm{x}-\mathrm{y}+\mathrm{c}_{1}=0\)
\(\mathrm{m}_{2} \mathrm{x}-\mathrm{y}+\mathrm{c}_{2}=0\)
\(\mathrm{m}_{3} \mathrm{x}-\mathrm{y}+\mathrm{c}_{3}=0\)
```

Since the lines are concurrent

$$
\begin{aligned}
& \therefore\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & \mathrm{c}_{1} \\
\mathrm{x}_{2} & \mathrm{y}_{2} & \mathrm{c}_{2} \\
\mathrm{x}_{3} & \mathrm{y}_{3} & \mathrm{c}_{3}
\end{array}\right|=0 \\
& \mathrm{~m}_{1}-1 \quad \mathrm{c}_{1} \\
& \begin{array}{lll}
\mathrm{m}_{2} & -1 & \mathrm{c}_{2}
\end{array}=0 \\
& \mathrm{~m}_{3}-1 \quad \mathrm{c}_{3} \\
& -\left|\begin{array}{ccc}
m_{1} & 1 & c_{1} \\
m_{2} & 1 & c_{2} \\
m_{3} & 1 & c_{3}
\end{array}\right|=0 \\
& \mathrm{R}_{2}-\mathrm{R}_{1}, \quad \mathrm{R}_{3}-\mathrm{R}_{1} \\
& \left|\begin{array}{ccc}
m_{1} & 1 & c_{1} \\
m_{2}-m_{1} & 0 & c_{2}-c_{1} \\
m_{3}-m_{1} & 0 & c_{3}-c_{1}
\end{array}\right|=0
\end{aligned}
$$

Expanding from C_{2}
$-(-1)\left|\begin{array}{ll}m_{2}-m_{1} & c_{2}-c_{1} \\ m_{3}-m_{1} & c_{3}-c_{1}\end{array}\right|=0$
$\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)\left(\mathrm{c}_{3}-\mathrm{c}_{1}\right)-\left(\mathrm{m}_{3}-\mathrm{m}_{1}\right)\left(\mathrm{c}_{2}-\mathrm{c}_{1}\right)=0$
$\left(m_{2}-m_{1}\right)\left(c_{3}-c_{1}\right)=\left(m_{3}-m_{1}\right)\left(c_{2}-c_{1}\right)$ is the required condition.
Q. 5 Determine the value of P such that the lines $2 x-3 y-1=0,3 x-y-5$ $=0$ and $3 x+p y+8=0$ meet at a point.
(Lhr. Board 2007, 2009) (Guj. Board 2008)
Solution:

$$
\begin{aligned}
& 2 x-3 y-1=0 \\
& 3 x-y-5=0 \\
& 3 x+P y+8=0
\end{aligned}
$$

Since the lines are concurrent

$$
\therefore\left|\begin{array}{ccc}
2 & -3 & -1 \\
3 & -1 & -5 \\
3 & \mathrm{P} & 8
\end{array}\right|=0
$$

$$
2\left|\begin{array}{cc}
-1 & -5 \\
\mathrm{P} & 8
\end{array}\right|-(-3)\left|\begin{array}{cc}
3 & -5 \\
3 & 8
\end{array}\right|+(-1)\left|\begin{array}{cc}
3 & -1 \\
3 & \mathrm{P}
\end{array}\right|=0
$$

$$
2(-8+5 P)+3(24+15)-1(3 P+3)=0
$$

$$
-16+10 P+3(39)-3 P-3=0
$$

$$
-16+10 \mathrm{P}+117-3 \mathrm{P}-3=0
$$

$$
7 P+98=0
$$

$$
7 \mathrm{P}=-98
$$

$$
P=\frac{-98}{7}
$$

$$
\mathrm{P} \quad=\quad-14 \quad \text { Ans }
$$

Q. 6 Show that the lines $4 x-3 y-8=0,3 x-4 y-6=0$ and $x-y-2=0$ are concurrent and third line bisects the angle formed by the first two lines.
(Lhr. Board 2011) (Guj. Board 2008)

Solution:

$$
\begin{align*}
& 4 x-3 y-8=0 \tag{1}\\
& 3 x-4 y-6=0 \tag{2}\\
& x-y-2=0 \tag{3}
\end{align*}
$$

Taking

$$
\left|\begin{array}{rrr}
4 & -3 & -8 \\
3 & -4 & -6 \\
1 & -1 & -2
\end{array}\right|
$$

$$
\begin{aligned}
& =4\left|\begin{array}{cc}
-4 & -6 \\
-1 & -2
\end{array}\right|-(-3)\left|\begin{array}{cc}
3 & -6 \\
1 & -2
\end{array}\right|+(-8)\left|\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right| \\
& =4(8-6)+3(-6+6)-8(-3+4) \\
& =4(2)+3(0)-8(1)=8+0-8=0
\end{aligned}
$$

Shows the lines are concurrent.
Let m_{1}, m_{2} and m_{3} be the slopes of lines (1), (2) and (3).

$$
\begin{aligned}
& \mathrm{m}_{1}=\frac{-4}{-3}=\frac{4}{3} \\
& \mathrm{~m}_{2}=\frac{-3}{-4}=\frac{3}{4} \\
& \mathrm{~m}_{3}=\frac{-1}{-1}=1
\end{aligned}
$$

Let θ_{1} be an angle from ℓ_{1} to ℓ_{3} and θ_{2} be an angle from ℓ_{3} to ℓ_{2}.

$$
\begin{aligned}
\tan \theta_{1} & =\frac{m_{3}-m_{1}}{1+m_{3} m_{1}} \\
& =\frac{1-\frac{4}{3}}{1+(1)\left(\frac{4}{3}\right)}=\frac{\frac{3-4}{3}}{\frac{3+4}{3}}
\end{aligned}
$$

$\tan \theta_{1}=\frac{-1}{7}$
$\tan \theta_{2}=\frac{m_{2}-m_{3}}{1+m_{2} m_{3}}=\frac{\frac{3}{4}-1}{1+\left(\frac{3}{4}\right)(1)}$
$=\frac{\frac{3-4}{4}}{\frac{4+3}{4}}$
$\tan \theta_{2}=\frac{-1}{7}$
$\therefore \tan \theta_{1}=\tan \theta_{2}$
$\Rightarrow \theta_{1}=\theta_{2}$
$=>\ell_{3}$ bisect the angle formed by the first two lines.
Q. 7 The vertices of a triangle are $A(-2,3), B(-4,1)$ and $C(3,5)$. Find coordinates of the
(i) centroid
(L.B 2006)
(ii) Orthocentre
(L.B 2009 (S))
(iii) Circumcentre of the triangle. Are these three points are collinear?

Solution:

$$
\mathrm{A}(-2,3), \mathrm{B}(-4,1) \mathrm{C}(3,5)
$$

(i) Centroid of a triangle is the intersection of medians is

$$
\begin{aligned}
& =\left(\frac{x_{1}+x_{2}+x_{3}}{2}, \frac{y_{1}+y_{2}+y_{3}}{2}\right) \\
& =\left(\frac{-2-4+3}{3}, \frac{3+1+5}{3}\right)=\left(\frac{-3}{3}, \frac{9}{3}\right) \\
& =(-1,3) \text { is the centroid of } \triangle \mathrm{ABC} .
\end{aligned}
$$

(ii) Orthocentre is the point of intersection of altitudes.

Let I be an orthocentre of a $\Delta \mathrm{ABC}$.
Let $\overline{\mathrm{CD}}$ and $\overline{\mathrm{AE}}$ be the altitudes of a $\triangle \mathrm{ABC}$.

Slope of side $\mathrm{BC}=\frac{5-1}{3+4}=\frac{4}{7}$
Slope of side $\mathrm{AB}=\frac{1-3}{-4+2}=\frac{-2}{-2}=1$
Since altitudes are \perp to sides.
\therefore Slope of altitude $\overline{\mathrm{AE}}=\frac{-1}{\frac{4}{7}}=\frac{-7}{4}$

$$
\text { Slope of altitude } \overline{\mathrm{CD}}=\frac{-1}{1}=-1
$$

Equation of altitude $\overline{\mathrm{AE}}$ is

$$
\begin{align*}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3 \quad=\frac{-7}{4}(x+2) \\
& 4(y-3)=-7 x-14 \\
& 4 y-12+7 x+14=0 \\
& 7 x+4 y+2=0 \tag{1}
\end{align*}
$$

Equation of altitude $\overline{\mathrm{CD}}$ is

$$
\begin{array}{lll}
\mathrm{y}-\mathrm{y}_{1} & = & m\left(\mathrm{x}-\mathrm{x}_{1}\right) \\
\mathrm{y}-5 & = & -1(\mathrm{x}-3) \\
\mathrm{y}-5 & = & -\mathrm{x}+3 \\
\mathrm{x}+\mathrm{y}-5-3 & =0 \\
\mathrm{x}+\mathrm{y}-8 & =0 \tag{2}
\end{array}
$$

To find the point of intersection solving equation (1) and equation (2)

$$
\begin{aligned}
& \frac{\mathrm{x}}{4(-8)-1(2)}=\frac{-\mathrm{y}}{7(-8)-1(2)}=\frac{1}{7(1)-1(4)} \\
& \frac{\mathrm{x}}{-32-2}=\frac{-\mathrm{y}}{-56-2}=\frac{1}{7-4} \\
& \frac{\mathrm{x}}{-34}=\frac{-\mathrm{y}}{-58}=\frac{1}{3} \\
& \Rightarrow \frac{\mathrm{x}}{-34}=\frac{1}{3} \quad \text { and } \frac{-\mathrm{y}}{-58}=\frac{1}{3} \\
& \mathrm{x}=\frac{-34}{3} \\
& \therefore\left(\frac{-34}{3}, \frac{58}{3}\right) \text { is orthocenter of } \triangle \mathrm{ABC} .
\end{aligned}
$$

(iii) Circumcentre of the triangle is the point of intersection of perpendicular bisector.

Let I be the centre of the circumcircle.
Since D and E are the mid points of sides $B C$ and $A C$ respectively.
Let $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CD}}$ are the perpendicular bisectors of sides $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BC}}$ respectively.

Coordinates of $\mathrm{D}=\left(\frac{3-4}{2}, \frac{5+1}{2}\right)$

$$
=\left(\frac{-1}{2}, \frac{6}{2}\right)=\left(\frac{-1}{2}, 3\right)
$$

Coordinates of $\mathrm{E}=\left(\frac{3-2}{2}, \frac{5+3}{2}\right)$

$$
=\left(\frac{1}{2}, \frac{8}{2}\right)=\left(\frac{1}{2}, 4\right)
$$

Slope of side $\overline{\mathrm{AC}}=\frac{5-3}{3+2}=\frac{2}{5}$
Slope of side $\overline{\mathrm{BC}}=\frac{5-1}{3+4} \quad=\frac{4}{7}$
Since perpendicular bisectors are perpendicular to the sides.
\therefore Slope of $\overline{\mathrm{CE}} \quad=\frac{-1}{\frac{2}{5}}=\frac{-5}{2}$
Slope of $\overline{\mathrm{CD}} \quad=\frac{-1}{\frac{4}{7}}=\frac{-7}{4}$
Equation of perpendicular bisector $\overline{\mathrm{CE}}$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-4=\frac{-5}{2}\left(x-\frac{1}{2}\right)$
$2(y-4)=-5\left(\frac{2 x-1}{2}\right)$
$10 x+4 y-21=0$
Equation of perpendicular bisector $\overline{C D}$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$

$$
\begin{align*}
& y-3=\frac{-7}{4}\left(x+\frac{1}{2}\right) \\
& y-3=\frac{-7}{4}\left(\frac{2 x+1}{2}\right) \\
& 8(y-3)=-14 x-7 \\
& 8 y-24+14 x+7=0 \\
& 14 x+8 y-17=0 \tag{2}
\end{align*}
$$

For point of intersection solving equation (1) and equation (2)

$$
\begin{aligned}
& \frac{x}{4(-17)-8(-21)}=\frac{-y}{(-17)(10)-14(-21)}=\frac{1}{10(8)-4(14)} \\
& \frac{x}{-68+168}=\frac{-y}{-170+294}=\frac{1}{80-56} \\
& \frac{x}{100}=\frac{-y}{124}=\frac{1}{24} \\
\Rightarrow & \frac{x}{100}=\frac{1}{24} \quad \text { and } \quad \frac{-y}{124}=\frac{1}{24} \\
& x=\frac{100}{24} \quad y=\frac{-124}{24} \\
& x=\frac{25}{6} \quad y=\frac{-31}{6} \\
\therefore & \left(\frac{25}{6}, \frac{-31}{6}\right) \text { is circumcentre of } \triangle A B C .
\end{aligned}
$$

Taking $\left|\begin{array}{ccc}-1 & 3 & 1 \\ \frac{-34}{3} & \frac{58}{3} & 1 \\ \frac{25}{6} & \frac{-31}{6} & 1\end{array}\right|$

$$
=-1\left|\begin{array}{cc}
\frac{58}{3} & 1 \\
\frac{-31}{6} & 1
\end{array}\right|-3\left|\begin{array}{cc}
\frac{-34}{3} & 1 \\
\frac{25}{6} & 1
\end{array}\right|+1\left|\begin{array}{cc}
\frac{-34}{3} & \frac{58}{3} \\
\frac{25}{6} & \frac{-31}{6}
\end{array}\right|
$$

$$
=-1\left(\frac{58}{3}+\frac{31}{6}\right)-3\left(\frac{-34}{3}-\frac{25}{6}\right)+1\left(\frac{1054}{18}-\frac{1450}{18}\right)
$$

$$
\begin{aligned}
& =-1\left(\frac{116+31}{6}\right)-3\left(\frac{-68-25}{6}\right)+1\left(\frac{-396}{18}\right) \\
& =-\frac{147}{6}-3\left(\frac{-93}{6}\right)-22 \quad=-\frac{49}{2}+\frac{93}{2}-22 \\
& =-\frac{49}{2}-3\left(\frac{93}{2}\right)-22 \quad=\frac{-49+93-44}{2}=\frac{0}{2}=0
\end{aligned}
$$

Hence centroid, orthocentre and circumcentre of $\triangle \mathrm{ABC}$ are concurrent.
Q. 8 Check whether the lines $4 x-3 y-8=0 ; 3 x-4 y-6=0 ; x-y-2=$ 0 are concurrent. If so, find the point where they meet.
(Lhr. Board 2005) (Guj. Board 2006)

Solution:

$$
\begin{align*}
& \begin{aligned}
& 4 x-3 y-8=0 \\
& 3 x-4 y-6=0 \\
& x-y-2=0
\end{aligned} \tag{1}\\
& \text { Taking }\left|\begin{array}{rrr}
4 & -3 & -8 \\
3 & -4 & -6 \\
1 & -1 & -2
\end{array}\right| \tag{2}\\
& \quad=4\left|\begin{array}{rr}
-4 & -6 \\
-1 & -2
\end{array}\right|-(-3)\left|\begin{array}{rr}
3 & -6 \\
1 & -2
\end{array}\right|+(-8)\left|\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right| \\
& =4(8-6)+3(-6+6)-8(-3+4) \\
& =4(2)+3(0)-8(1)=8+0-8 \quad=0
\end{align*}
$$

Hence the lines are concurrent. Now we find the point of intersection solving eq. (1) \& eq. (2)

$$
\begin{aligned}
& \frac{\mathrm{x}}{\frac{-3(-6)-(-4)(-8)}{-3}=\frac{-y}{4(-6)-3(-8)}=\frac{1}{4(-4)-3(-3)}} \begin{array}{l}
\frac{\mathrm{x}}{18-32}=\frac{-\mathrm{y}}{-24+24}=\frac{1}{-16+9} \\
\frac{\mathrm{x}}{-14} \quad=\frac{-\mathrm{y}}{0} \quad=\frac{1}{-7} \\
\Rightarrow \frac{x}{-14} \quad=\frac{1}{-7} \quad \text { and } \quad \frac{-y}{0}=\frac{1}{-7} \\
x \quad=\frac{-14}{-7} \quad, \quad 7 y=0 \\
x \quad=2 \quad, \quad y=0
\end{array}
\end{aligned}
$$

$\therefore(2,0)$ is the point of concurrency of three lines.
Q. 9 Find the coordinates of the vertices of the triangle formed by the lines x $2 y-6=0 ; 3 x-y+3=0 ; \quad 2 x+y-4=0$. Also find measures of the angles of the triangle. (Lhr. Board 2005) (Guj. Board 2005)

Solution:

$$
\begin{array}{ll}
x-2 y-6 & =0 \\
3 x-y+3 & =0 \tag{2}\\
2 x+y-4 & =0
\end{array}
$$

For point of intersection solving (1) and (2)

$$
\begin{aligned}
& \frac{\mathrm{x}}{-2(3)-(-1)(-6)}=\frac{-\mathrm{y}}{1(3)-(3)(-6)}=\frac{1}{1(-1)-3(-2)} \\
& \frac{\mathrm{x}}{-6-6}=\frac{-\mathrm{y}}{3+18}=\frac{1}{-1+6} \\
& \frac{\mathrm{x}}{-12}=\frac{-\mathrm{y}}{21}=\frac{1}{5} \\
\Rightarrow & \frac{\mathrm{x}}{-12}=\frac{1}{5} \quad \text { and } \quad \frac{-\mathrm{y}}{21}=\frac{1}{5} \\
& x \quad=\frac{-12}{5} \quad y \quad=\frac{-21}{5} \\
\therefore & \left(\frac{-12}{5}, \frac{-21}{5}\right) \text { is the point of intersection of (1) and (2). }
\end{aligned}
$$

For point of intersection solving equation (2) and equation (3)

$$
\begin{aligned}
& \frac{x}{(-1)(-4)-1(3)}=\frac{-y}{3(-4)-2(3)}=\frac{1}{3(1)-2(-1)} \\
& \frac{x}{4-3}=\frac{-y}{-12-6}=\frac{1}{3+2} \\
& \frac{x}{1}=\frac{-y}{-18}=\frac{1}{5} \\
\Rightarrow & \frac{x}{1}=\frac{1}{5} \quad \text { and } \quad \frac{-y}{-18}=\frac{1}{5} \\
& x=\frac{1}{5} \\
\therefore & \left(\frac{1}{5}, \frac{18}{5}\right) \text { is the point of intersection of }(2) \&(3)
\end{aligned}
$$

For point of intersection solving equation (1) \& equation (3)

$$
\frac{x}{(-2)(-4)-1(-6)}=\frac{-y}{1(-4)-2(-6)} \quad=\frac{1}{1(1)-2(-2)}
$$

$$
\begin{array}{ll}
\frac{x}{8+6}= & \frac{-y}{-4+12} \\
\frac{x}{14} & =\frac{1}{1+4} \\
\frac{x}{14} & =\frac{1}{5} \\
x & =\frac{1}{5} \\
x & \text { and } \quad \frac{-y}{8}=\frac{14}{5}
\end{array}
$$

$\therefore\left(\frac{14}{5}, \frac{-8}{5}\right)$ is the point of intersection of equation (1) and equation (3).
Let $\mathrm{m}_{1}, \mathrm{~m}_{2}$ and m_{3} be the slopes of sides AB, BC and CA respectively.

$$
\begin{aligned}
& \mathrm{m}_{1}=\frac{\frac{18}{5}+\frac{21}{5}}{\frac{1}{5}+\frac{12}{5}}=\frac{\frac{18+21}{5}}{\frac{1+12}{5}}=\frac{39}{13}=3 \\
& \mathrm{~m}_{2}=\frac{\frac{-8}{5}+\frac{18}{5}}{\frac{14}{5}-\frac{1}{5}}=\frac{\frac{-8-18}{5}}{\frac{14-1}{5}}=\frac{-26}{13}=-2 \\
& \mathrm{~m}_{3}=\frac{\frac{-21}{5}+\frac{8}{5}}{\frac{-12}{5}-\frac{14}{5}}=\frac{\frac{-21+8}{5}}{\frac{-12-14}{5}}=\frac{13}{26}=\frac{1}{2}
\end{aligned}
$$

Let α, β and γ be the angles of a triangle ABC .
$\tan \alpha=\frac{\mathrm{m}_{1}-\mathrm{m}_{3}}{1+\mathrm{m}_{1} \mathrm{~m}_{3}}=\frac{3-\frac{1}{2}}{1+(3)\left(\frac{1}{2}\right)}$

$$
\begin{aligned}
& =\frac{\frac{6-1}{2}}{\frac{2+3}{2}}=\frac{5}{5} \\
\tan \alpha= & 1 \\
\alpha & =\frac{\tan ^{-1}(1)=45^{\circ}}{\mathrm{m}_{2}-\mathrm{m}_{1}} \\
\tan \beta & =\frac{-2-3}{1+\mathrm{m}_{2} \mathrm{~m}_{1}} \\
& =\frac{-5}{1-6} \\
& =\frac{-5}{-5} \\
& =1 \\
& =\frac{1}{\tan ^{-1}(1)=45^{\circ}} \\
\tan \beta & =\frac{m_{3}-\mathrm{m}_{2}}{1+\mathrm{m}_{3} \mathrm{~m}_{2}} \\
\tan \gamma & =\frac{1}{2}+2 \\
& =\frac{1+4}{2} \\
& =\frac{5}{1+\left(\frac{1}{2}\right)(-2)} \\
& =\infty \\
\tan \gamma & \tan ^{-1}(\infty)=90^{\circ}
\end{aligned}
$$

Q. 10 Find the angle measured from the line ℓ_{1} to the line ℓ_{2} where
(a) ℓ_{1} : joining $(2,7)$ and $(7,10)$
$\ell_{2}:$ joining $(1,1)$ and $(-5,3)$
(b) $\quad \ell_{1}:$ joining $(3,-1)$ and $(5,7)$
ℓ_{2} : joining $(2,4)$ and $(-8,2)$
(c) $\ell_{1}:$ joining $(1,-7)$ and $(6,-4)$
$\ell_{2}:$ joining $(-1,2)$ and $(-6,-1)$
(d) $\ell_{1}:$ joining $(-9,-1)$ and $(3,-5)$
$\ell_{2}:$ joining $(2,7)$ and $(-6,-7)$
Also find the acute angle in each case.

Solution:

(a)Let m_{1} be the slope of line ℓ_{1} and m_{2} be the slope of line ℓ_{2}.

$$
\begin{aligned}
& \mathrm{m}_{1}=\frac{10-7}{7-2}=\frac{3}{5} \\
& \mathrm{~m}_{2}=\frac{3-1}{-5-1}=\frac{2}{-6}=\frac{-1}{3}
\end{aligned}
$$

Let θ be an angle from line ℓ_{1} to ℓ_{2}.

$$
\begin{aligned}
\tan \theta= & \frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}} \\
& =\frac{\frac{-1}{3}-\frac{3}{5}}{1+\left(\frac{-1}{3}\right)\left(\frac{3}{5}\right)}=\frac{\frac{-5-9}{15}}{\frac{15-3}{15}}=\frac{-14}{12} \\
\tan \theta= & \frac{-7}{6} \\
\theta & =\tan ^{-1}\left(\frac{-7}{6}\right)=-49.4^{\circ} \\
& =180^{\circ}-49.4^{\circ} \\
& =130.6^{\circ} \quad \text { Ans }
\end{aligned}
$$

Acute angle $=\theta=\tan ^{-1}\left|\frac{-7}{6}\right|=49.4^{\circ}$ Ans.
(b)Let m_{1} be the slope of line ℓ_{1} and m_{2} be the slope of line ℓ_{2}.

$$
\begin{aligned}
& \mathrm{m}_{1}=\frac{7+1}{5-3}=\frac{8}{2}=4 \\
& \mathrm{~m}_{2}=\frac{2-4}{-8-2}=\frac{-2}{-10}=\frac{1}{5}
\end{aligned}
$$

Let θ be an angle from line ℓ_{1} to ℓ_{2}.

$$
\begin{aligned}
& \tan \theta= \frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}} \\
&=\frac{\frac{1}{5}-4}{1+4\left(\frac{1}{5}\right)}=\frac{\frac{1-20}{5}}{\frac{5+4}{5}}=\frac{-19}{9} \\
& \theta=\tan ^{-1}\left(\frac{-19}{9}\right)=-64.65^{\circ}
\end{aligned}
$$

$=\quad 180^{\circ}-64.5^{\circ}$
$=115.35^{\circ} \quad$ Ans

$$
\text { Acute angle }=\theta=\tan ^{-1}\left|\frac{-19}{9}\right|=64.65^{\circ} \text { Ans. }
$$

(c) Let m_{1} and m_{2} be the slopes of lines ℓ_{1} and ℓ_{2}.

$$
\begin{aligned}
& \mathrm{m}_{1}=\frac{-4+7}{6-1}=\frac{3}{5} \\
& \mathrm{~m}_{2}=\frac{-1-2}{-6+1}=\frac{-3}{-5}=\frac{3}{5}
\end{aligned}
$$

Let θ be an angle from ℓ_{1} to ℓ_{2}.

$$
\begin{aligned}
\tan \theta= & \frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}} \\
& =\frac{\frac{3}{5}-\frac{3}{5}}{1+\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)}=\frac{0}{1+\frac{9}{25}}
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=0 \\
& \theta \quad=\tan ^{-1}(0)=0^{\circ} \quad \text { Ans }
\end{aligned}
$$

(d)Let m_{1} and m_{2} be the slopes of lines ℓ_{1} and ℓ_{2}.

$$
\begin{aligned}
& m_{1}=\frac{-5+1}{3+9}=\frac{-4}{12}=\frac{-1}{3} \\
& m_{2}=\frac{-7-7}{-6-2}=\frac{-14}{-8}=\frac{7}{4}
\end{aligned}
$$

Let θ be an angle between from ℓ_{1} to ℓ_{2}.

$$
\begin{aligned}
\tan \theta= & \frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}} \\
= & \frac{\frac{7}{4}+\frac{1}{3}}{1+\left(\frac{-1}{3}\right)\left(\frac{7}{4}\right)}=\frac{\frac{21+4}{12}}{\frac{12-7}{12}}=\frac{25}{5}
\end{aligned}
$$

$$
\tan \theta=5
$$

$$
\theta \quad=\quad \tan ^{-1}(5)
$$

$$
\theta \quad=78.69^{\circ} \quad \text { Ans }
$$

Q.11:Find the interior angles of the triangle whose vertices are

(a)A $(-2,11), \mathrm{B}(-6,-3), \mathrm{C}(4,-9)$
(b) $\mathrm{A}(6,1), \mathrm{B}(2,7), \mathrm{C}(-6,-7)$
(c) A $(2,-5), \mathrm{B}(-4,-3), \mathrm{C}(-1,5)$
(d) $\mathrm{A}(2,8), \mathrm{B}(-5,4), \mathrm{C}(4,-9)$

Solution:

(a)A $(-2,11), B(-6,-3), C(4,-9) \quad$ (Lhr. Board 2008)

Let m_{1}, m_{2} and m_{3} be the slopes of sides $A B, B C$ and $A C$ respectively.

$$
\begin{aligned}
& m_{1}=\frac{-3-11}{-6+2}=\frac{-14}{-4}=\frac{7}{2} \\
& m_{2}=\frac{-9+3}{4+6}=\frac{-6}{10}=\frac{-3}{5}
\end{aligned}
$$

$$
m_{3}=\frac{-9-11}{4+2}=\frac{-20}{6}=\frac{-10}{3}
$$

Let α, β and γ be the angles of a $\Delta \mathrm{ABC}$.
Let θ be an angle from line ℓ_{1} to ℓ_{2}.

$$
\begin{aligned}
\tan \alpha= & \frac{m_{3}-m_{1}}{1+m_{3} m_{1}} \\
& =\frac{\frac{-10}{3}-\frac{7}{2}}{1+\left(\frac{-10}{3}\right)\left(\frac{7}{2}\right)}=\frac{\frac{-20-21}{6}}{\frac{6-70}{6}}=\frac{-41}{-64}=\frac{41}{64} \\
\alpha= & \tan ^{-1}\left(\frac{41}{64}\right)=32.64^{\circ} \text { Ans. } \\
\tan \beta= & \frac{m_{1}-m_{2}}{1+m_{1} m_{2}} \\
& =\frac{\frac{7}{2}+\frac{3}{5}}{1+\left(\frac{7}{2}\right)\left(\frac{-3}{5}\right)}=\frac{\frac{35+6}{10}}{\frac{10-21}{10}}=\frac{41}{-11} \\
\beta & =\tan ^{-1}\left(\frac{-41}{11}\right)
\end{aligned}
$$

$$
\begin{array}{lll}
= & -74.98^{\circ} & \\
= & 180^{\circ}-74.98^{\circ} \\
= & 105.02^{\circ} \quad \text { Ans. }
\end{array}
$$

$$
\tan \gamma=\frac{m_{2}-m_{3}}{1+m_{2} m_{3}}
$$

$$
=\frac{\frac{-3}{5}+\frac{10}{3}}{1+\left(\frac{-3}{5}\right)\left(\frac{-10}{3}\right)}=\frac{\frac{-9+50}{15}}{\frac{15+30}{15}}
$$

$$
\tan \gamma=\frac{41}{45}
$$

$$
\gamma=\tan ^{-1}\left(\frac{41}{45}\right)
$$

$$
\gamma=42.34^{\circ} \quad \text { Ans }
$$

(b) $\mathrm{A}(6,1), \mathrm{B}(2,7), \mathrm{C}(-6,-7)$

Let $\mathrm{m}_{1}, \mathrm{~m}_{2}$ and m_{3} be the slopes of sides AB, BC and AC respectively.

$$
\begin{aligned}
& \mathrm{m}_{1}=\frac{7-1}{2-6}=\frac{6}{-4}=\frac{-3}{2} \\
& \mathrm{~m}_{2}=\frac{-7-7}{-6-2}=\frac{-14}{-8}=\frac{7}{4} \\
& \mathrm{~m}_{3}=\frac{-7-1}{-6-6}=\frac{-8}{-12}=\frac{2}{3}
\end{aligned}
$$

Let α, β and γ be the angles of a $\Delta \mathrm{ABC}$.
$\tan \alpha=\frac{m_{3}-m_{1}}{1+m_{3} m_{1}}$

$$
=\frac{\frac{2}{3}+\frac{3}{2}}{1+\left(\frac{2}{3}\right)\left(\frac{-3}{2}\right)}=\frac{\frac{4+9}{6}}{1-1}=\frac{\frac{13}{6}}{0}
$$

$$
\begin{aligned}
\tan \alpha= & \infty \\
\alpha & =\begin{array}{c}
\tan ^{-1}(\infty)=90^{\circ} \quad \text { Ans } \\
\tan \beta
\end{array}=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}} \\
& =\frac{\frac{-3}{2}-\frac{7}{4}}{1+\left(\frac{-3}{2}\right)\left(\frac{7}{4}\right)}=\frac{\frac{-12-14}{8}}{\frac{8-21}{8}}=\frac{-26}{-13}=2 \\
\beta & =\tan ^{-1}(2)=63.43^{\circ} \quad \text { Ans } \\
\tan \gamma & =\frac{\mathrm{m}_{2}-\mathrm{m}_{3}}{1+\mathrm{m}_{2} \mathrm{~m}_{3}} \\
& =\frac{\frac{7}{4}-\frac{2}{3}}{1+\left(\frac{7}{4}\right)\left(\frac{2}{3}\right)}=\frac{\frac{21-8}{12}}{\frac{12+14}{12}}=\frac{13}{26}=\frac{1}{2} \\
\gamma & =\tan ^{-1}\left(\frac{1}{2}\right) \\
\gamma & =26.57^{\circ}
\end{aligned}
$$

(c) A $(2,-5), \mathrm{B}(-4,-3), \mathrm{C}(-1,5)$

Let m_{1}, m_{2} and m_{3} be the slopes of sides $A B, B C$ and $A C$ respectively.
$m_{1}=\frac{-3+5}{-4+2}=\frac{2}{-6}=\frac{-1}{3}$

$$
\begin{aligned}
& \mathrm{m}_{2}=\frac{5+3}{-1+4}=\frac{8}{3} \\
& \mathrm{~m}_{3}=\frac{5+5}{-1-2}=\frac{10}{-3}=\frac{-10}{3}
\end{aligned}
$$

Let α, β and γ be the angles of a triangle ABC .

$$
\tan \alpha=\frac{m_{1}-m_{3}}{1+m_{1} m_{3}}
$$

$$
=\frac{\frac{-1}{3}+\frac{10}{3}}{1+\left(\frac{-1}{3}\right)\left(\frac{-10}{3}\right)}=\frac{\frac{-1+10}{3}}{\frac{9+10}{9}}=\frac{9(9)}{3(19)}=\frac{27}{19}
$$

$$
\alpha=\tan ^{-1}\left(\frac{27}{19}\right) \quad=\quad 54.87^{\circ} \quad \text { Ans. }
$$

$$
\tan \beta=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}
$$

$$
=\frac{\frac{8}{3}+\frac{1}{3}}{1+\left(\frac{8}{3}\right)\left(\frac{-1}{3}\right)}=\frac{\frac{9}{3}}{\frac{9-8}{9}}=\frac{9 \times 9}{3}=27
$$

$$
\beta=\tan ^{-1} 27=87.88^{\circ} \quad \text { Ans. }
$$

$$
\tan \gamma=\frac{m_{3}-m_{2}}{1+m_{3} m_{2}}
$$

$$
=\frac{\frac{-10}{3}-\frac{8}{3}}{1+\left(\frac{-10}{3}\right)\left(\frac{8}{3}\right)}=\frac{\frac{-18}{3}}{\frac{9-80}{9}}=\frac{-18 \times 9}{3 \times-71}=\frac{54}{71}
$$

$$
\gamma=\tan ^{-1}\left(\frac{54}{71}\right)=37.26^{\circ} \quad \text { Ans. }
$$

(d) $\mathrm{A}(2,8), \mathrm{B}(-5,4), \mathrm{C}(4,-9)$

Let $\mathrm{m}_{1}, \mathrm{~m}_{2}$ and m_{3} be the slope of sides AB, BC and AC respectively.

$$
\begin{aligned}
& m_{1}=\frac{4-8}{-5-2}=\frac{-4}{-7}=\frac{4}{7} \\
& m_{2}=\frac{-9-4}{4+5}=\frac{-13}{9} \\
& m_{3}=\frac{-9-8}{4-2}=\frac{-17}{2}
\end{aligned}
$$

Let α, β and γ be the angles of $\triangle \mathrm{ABC}$.

$$
\begin{aligned}
\tan \alpha= & \frac{\mathrm{m}_{3}-\mathrm{m}_{1}}{1+\mathrm{m}_{3} \mathrm{~m}_{1}} \\
& =\frac{\frac{-17}{2}-\frac{4}{7}}{1+\left(\frac{-17}{2}\right)\left(\frac{4}{7}\right)}=\frac{\frac{-119-8}{14}}{\frac{14-68}{14}}=\frac{-127}{-54} \\
\alpha & =\tan ^{-1}\left(\frac{127}{54}\right)=66.96^{\circ} \quad \text { Ans. }
\end{aligned}
$$

$$
\tan \beta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}
$$

$$
=\frac{\frac{4}{7}+\frac{13}{9}}{1+\left(\frac{4}{7}\right)\left(\frac{-13}{9}\right)}=\frac{\frac{36+91}{63}}{\frac{63-52}{63}}=\frac{127}{11}
$$

$$
\beta=\tan ^{-1}\left(\frac{127}{11}\right)=85.05^{\circ} \text { Ans. }
$$

$$
\tan \gamma=\frac{m_{2}-m_{3}}{1+m_{2} m_{3}}
$$

$$
=\frac{-\frac{13}{9}+\frac{17}{2}}{1+\left(\frac{-13}{9}\right)\left(\frac{-17}{2}\right)}=\frac{\frac{-26+153}{18}}{\frac{18+221}{18}}=\frac{127}{239}
$$

$$
\gamma=\tan ^{-1}\left(\frac{127}{239}\right)=27.99^{\circ} \quad \text { Ans }
$$

Q. 12 Find the interior angles of the quadrilateral whose vertices are

A (5, 2), B $(-2,3), C(-3,-4)$ and $D(4,-5)$.

Solution:

Let $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ and m_{4} be the slopes of sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and AD respectively.

$$
\begin{aligned}
& \mathrm{m}_{1}=\frac{3-2}{-2-5}=\frac{1}{-7}=\frac{-1}{7} \\
& \mathrm{~m}_{2}=\frac{-4-3}{-3+2}=\frac{-7}{-1}=7 \\
& \mathrm{~m}_{3}=\frac{-5+4}{4+3}=\frac{-1}{7} \\
& \mathrm{~m}_{4}=\frac{-5-2}{4-5}=\frac{-7}{-1}=7
\end{aligned}
$$

Let α, β, γ and δ be the angles of quadrilateral ABCD .
$\tan \alpha=\frac{m_{4}-m_{1}}{1+m_{4} m_{1}}$

$$
=\frac{7+\frac{1}{7}}{1+7\left(\frac{-1}{7}\right)}=\frac{\frac{49+1}{7}}{1-1}=\frac{50}{7(0)}=\frac{50}{0}=\infty
$$

$$
\alpha=\tan ^{-1}(\infty)
$$

$$
\alpha=90^{\circ}
$$

$$
\tan \beta=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}=\frac{\frac{-1}{7}-7}{1+\left(\frac{-1}{7}\right)(7)}=\frac{\frac{-1-49}{7}}{1-1}=\frac{-50}{7(0)}
$$

$$
\beta=\tan ^{-1}(\infty)=90^{\circ}
$$

$$
\begin{aligned}
& \tan \gamma= \frac{\mathrm{m}_{2}-\mathrm{m}_{3}}{1+\mathrm{m}_{2} \mathrm{~m}_{3}} \\
&=\frac{7+\frac{1}{7}}{1+(7)\left(\frac{-1}{7}\right)}=\frac{\frac{49+1}{7}}{1-1}=\frac{50}{7(0)} \\
& \tan \gamma= \infty \\
& \gamma=\tan ^{-1}(\infty)=90^{\circ} \\
& \tan \delta=\frac{m_{3}-\mathrm{m}_{4}}{1+\mathrm{m}_{3} \mathrm{~m}_{4}} \\
&=\frac{\frac{-1}{7}-7}{1+\left(\frac{-1}{7}\right)(7)}=\frac{\frac{-1-49}{7}}{1-1}=\frac{-50}{7(0)}
\end{aligned}
$$

$\tan \delta=\quad \infty$

$$
\delta=\tan ^{-1}(\infty)=90^{\circ}
$$

Q.13:Show that the points $A(-1,-1), B(-3,0), C(3,7), D(1,8)$ are the vertices of a rectangle. Find its interior angles.

Solution:
$\mathrm{A}(-1,-1), \mathrm{B}(-3,0), \mathrm{C}(3,7), \mathrm{D}(1,8)$

Let $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ and m_{4} be the slopes of sides $\mathrm{AB}, \mathrm{BD}, \mathrm{DC}$ and AC respectively $m_{1}=\frac{0+1}{-3+1}=\frac{1}{-2}=\frac{-1}{2}$

$$
\begin{aligned}
\mathrm{m}_{2} & =\frac{8-0}{1+3}=\frac{8}{4}=2 \\
\mathrm{~m}_{3} & =\frac{7-8}{3-1}=\frac{-1}{2} \\
\mathrm{~m}_{4} & =\frac{7+1}{3+1}=\frac{8}{4}=2 \\
\tan \alpha= & \frac{\mathrm{m}_{1}-\mathrm{m}_{4}}{1+\mathrm{m}_{1} \mathrm{~m}_{4}} \\
& =\frac{\frac{-1}{2}-2}{1+\left(\frac{-1}{2}\right)(2)}=\frac{\frac{-1-4}{2}}{1-1}=\frac{-5}{2}
\end{aligned}
$$

$$
\tan \alpha=\quad \infty
$$

$$
\alpha=\tan ^{-1}(\infty)=90^{\circ}
$$

$$
\tan \beta=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}
$$

$$
=\frac{2+\frac{1}{2}}{1+(2)\left(\frac{-1}{2}\right)}=\frac{\frac{4+1}{2}}{1-1}=\frac{\frac{5}{2}}{0}
$$

$$
\tan \beta=\quad \infty
$$

$$
\beta=\tan ^{-1}(\infty)=90^{\circ}
$$

$$
\tan \delta=\frac{m_{3}-m_{2}}{1+m_{3} m_{2}}
$$

$$
=\frac{\frac{-1}{2}-2}{1+\left(\frac{-1}{2}\right)(2)}=\frac{\frac{-1-4}{2}}{1-1}=\frac{\frac{5}{2}}{0}
$$

$\tan \delta=\quad \infty$

$$
\delta=\tan ^{-1}(\infty)=90^{\circ}
$$

$$
\tan \gamma=\frac{m_{4}-m_{3}}{1+m_{4} m_{3}}
$$

$$
=\frac{2+\frac{1}{2}}{1+(2)\left(\frac{-1}{2}\right)}=\frac{\frac{4+1}{2}}{1-1}=\frac{\frac{5}{2}}{0}
$$

$$
\begin{aligned}
\tan \gamma & =\infty \\
\gamma & =\tan ^{-1}(\infty)=90^{\circ}
\end{aligned}
$$

Q. 14 Find the area of a region bounded by the triangle whose sides are

 $7 \mathrm{x}-\mathrm{y}-10=0 ; 10 \mathrm{x}+\mathrm{y}-41=0 ; 3 \mathrm{x}+2 \mathrm{y}+3=0$.
Solution:

$$
\begin{align*}
& 7 x-y-10=0 \tag{1}\\
& 10 x+y-41=0 \tag{2}\\
& 3 \mathrm{x}+2 \mathrm{y}+3=0 \\
& \text { For point of intersection solving equation (1) and equation (2) } \\
& \frac{x}{(-1)(-41)-1(-10)}=\frac{-y}{7(-41)-10(-10)}=\frac{1}{7(1)-10(-1)} \\
& \frac{x}{41+10}=\frac{-y}{-287+100}=\frac{1}{7+10} \\
& \frac{x}{51}=\frac{-y}{-187}=\frac{1}{17} \\
& \Rightarrow \quad \frac{x}{51} \quad=\frac{1}{17} \quad \text { and } \quad \frac{-y}{-187} \quad=\frac{1}{17} \\
& x=\frac{51}{17} \\
& y=\frac{187}{17} \\
& \mathrm{x}=3 \quad \mathrm{y}=11
\end{align*}
$$

$\therefore \quad(3,11)$ is the point of intersection of equation (1) and equation (2).
For point of intersection solving equation (2) and equation (3)

$$
\begin{array}{rlrl}
\frac{x}{1(3)-2(-41)}=\frac{-y}{3(10)-3(-41)} & =\frac{1}{10(2)-3(1)} \\
\frac{x}{3+82}=\frac{-y}{30+123}=\frac{1}{20-3} & \\
\frac{x}{85}=\frac{-y}{153}=\frac{1}{17} & \\
\Rightarrow \quad \frac{x}{85}=\frac{1}{17} & \text { and } & \frac{-y}{153} & =\frac{1}{17} \\
x \quad & =\frac{85}{17} & & y \\
x \quad & & =\frac{-153}{17} \\
x & & y & =-9
\end{array}
$$

$\therefore \quad(5,-9)$ is the point of intersection of equation (2) and equation (3).
For point of intersection solving equation (1) and equation (3).

$$
\begin{aligned}
& \frac{\mathrm{x}}{3(-1)-2(-10)}=\frac{-\mathrm{y}}{3(7)-3(-10)}=\frac{1}{7(2)-3(-1)} \\
& \frac{x}{-3+20}=\frac{-y}{21+30}=\frac{1}{14+3} \\
& \frac{x}{17}=\frac{-y}{51}=\frac{1}{17} \\
& \Rightarrow \quad \frac{x}{17} \quad=\frac{1}{17} \quad \text { and } \quad \frac{-y}{51} \quad=\frac{1}{17} \\
& \mathrm{x}=\frac{17}{17} \quad \mathrm{y}=\frac{-51}{17} \\
& \mathrm{x}=1 \quad \mathrm{y}=-3
\end{aligned}
$$

$\therefore \quad(1,-3)$ is the point of intersection of equation (1) and equation (2).

$$
\begin{aligned}
& \text { Area of } \Delta \mathrm{ABC}=\frac{1}{2}\left|\begin{array}{ccc}
3 & 11 & 1 \\
5 & -9 & 1 \\
1 & -3 & 1
\end{array}\right| \\
& =\frac{1}{2}\left[3\left|\begin{array}{cc}
-9 & 1 \\
-3 & 1
\end{array}\right|-11\left|\begin{array}{cc}
5 & 1 \\
1 & 1
\end{array}\right|+1\left|\begin{array}{cc}
5 & -9 \\
1 & -3
\end{array}\right|\right] \\
& =\frac{1}{2}[3(-9+3)-11(5-1)+1(-15+9)] \\
& =\frac{1}{2}[3(-6)-11(4)+1(-6)] \\
& =\frac{1}{2}[-18-44-6]=\frac{-68}{2}=-34
\end{aligned}
$$

$=\quad 34$ sq. unit Neglecting negative sign. Ans.
Q. 15 The vertices of a triangle are $A(-2,3), B(-4,1)$ and $C(3,5)$. Find the centre of the circum circle of the triangle.

Solution:

$\mathrm{A}(-2,3), \mathrm{B}(-4,1), \mathrm{C}(3,5)$
Let I be the center of the circum circle.
Since D and E are the mid points of sides $\overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$ respectively.
Let $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CD}}$ be the perpendicular bisectors of sides $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BC}}$ respectively.

Coordinates of $\mathrm{D}=\left(\frac{3-4}{2}, \frac{5+1}{2}\right)$
Coordinates of $\mathrm{D}=\left(\frac{-1}{2}, \frac{6}{2}\right)$
Coordinates of $\mathrm{D}=\left(\frac{-1}{2}, 3\right)$
Coordinates of $\mathrm{E}=\left(\frac{3-2}{2}, \frac{5+3}{2}\right)$
Coordinates of $\mathrm{E}=\left(\frac{1}{2}, \frac{8}{2}\right)$
Coordinates of $\mathrm{E}=\left(\frac{1}{2}, 4\right)$
Slope of $\overline{\mathrm{AC}} \quad=\frac{5-3}{3+2}$
$=\frac{2}{5}$
Slope of $\overline{\mathrm{BC}} \quad=\frac{5-1}{3+4}=\frac{4}{7}$
Since perpendicular bisectors are \perp to the sides
$\therefore \quad$ Slope of $\overline{\mathrm{CE}} \quad=\frac{-1}{\frac{2}{5}}=\frac{-5}{2}$
Slope of $\overline{\mathrm{CD}} \quad=\frac{-1}{\frac{4}{7}}=\frac{-7}{4}$
Equation of perpendicular bisector $\overline{\mathrm{CE}}$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-4=\frac{-5}{2}\left(x-\frac{1}{2}\right)$

$$
\begin{align*}
& 2(y-4)=-5\left(\frac{2 x-1}{2}\right) \\
& 4(y-4)=-10 x+5 \\
& 4 y-16+10 x-5=0 \\
& 10 x+4 y-21=0 \tag{1}
\end{align*} .
$$

Equation of perpendicular bisector $\overline{\mathrm{CD}}$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-3=\frac{-7}{4}\left(x+\frac{1}{2}\right)$
$y-3=\frac{-7}{4}\left(\frac{2 x+1}{2}\right)$
$8(y-3)=-14 x-7$
$8 y-24+14 x+7=0$
$14 \mathrm{x}+8 \mathrm{y}-17=0$
Since I be the point of intersection of equation (1) and equation (2)
Solving eq. (1) and eq. (2) for point for intersection.

$$
\begin{aligned}
& \frac{x}{4(-17)-8(-21)}=\frac{-y}{(-17)(10)-14(-21)}=\frac{1}{10(8)-4(14)} \\
& \frac{x}{-68+168}=\frac{-y}{-170+294}=\frac{1}{80-56} \\
& \frac{x}{100}=\frac{-y}{124}=\frac{1}{24} \\
& \Rightarrow \quad \frac{x}{100}=\frac{1}{24} \quad \text { and } \quad \frac{-y}{124}=\frac{1}{24} \\
& \mathrm{x}=\frac{100}{24} \quad \mathrm{y}=\frac{-124}{24} \\
& \mathrm{x}=\frac{25}{6} \quad \mathrm{y}=\frac{-31}{6}
\end{aligned}
$$

$\therefore \quad \mathrm{I}\left(\frac{25}{6}, \frac{-31}{6}\right)$ is the centre of circum circle.
Q. 16 Express the given system of equations in matrix form. Find in each case whether the lines are concurrent.
(a) $x+3 y-2=0 ; 2 x-y+4=0 ; x-11 y+14=0$
(b) $2 x+3 y+4=0 ; \quad x-2 y-3=0 ; 3 x+y-8=0$
(c) $3 x-4 y-2=0 ; \quad x+2 y-4=0 ; 3 x-2 y+5=0$

Solution:

(a)

$$
\begin{aligned}
& x+3 y-2=0 \\
& 2 x-y+4=0 \\
& x-11 y+14=0
\end{aligned}
$$

This system of equations can be written in matrix form as
$\left[\begin{array}{ccc}1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Taking $\left|\begin{array}{lll}1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14\end{array}\right|$

$$
\begin{aligned}
& =1\left|\begin{array}{cc}
-1 & 4 \\
-11 & 14
\end{array}\right|-3\left|\begin{array}{cc}
2 & 4 \\
1 & 14
\end{array}\right|+(-2)\left|\begin{array}{cc}
2 & -1 \\
1 & -11
\end{array}\right| \\
& =1(-14+44)-3(28-4)-2(-22+1) \\
& =30-3(24)-2(-21)=30-72+42=0
\end{aligned}
$$

$\therefore \quad$ The given lines are concurrent.
(b)

$$
\begin{aligned}
& 2 x+3 y+4=0 \\
& x-2 y-3=0 \\
& 3 x+y-8=0
\end{aligned}
$$

This system of equations can be written in matrix form as
$\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & -2 & -3 \\ 3 & 1 & -8\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\left|\begin{array}{cccc}2 & 3 & 4 \\ 1 & -2 & -3 \\ 3 & 1 & -8\end{array}\right|$

$$
\begin{aligned}
& \left.=2\left|\begin{array}{cc}
-2 & -3 \\
1 & -8
\end{array}\right|-3\left|\begin{array}{cc}
1 & -3 \\
3 & -8
\end{array}\right|+4 \right\rvert\, \begin{array}{cc}
1 & -2 \\
3 & 1
\end{array} \\
& =2(16+3)-3(-8+9)+4(1+6)
\end{aligned}
$$

$$
\begin{aligned}
& =\quad 2(19)-3(1)+4(7) \\
& =\quad 38-3+28 \\
& =\quad 63 \neq 0
\end{aligned}
$$

$\therefore \quad$ The given lines are not concurrent.
(c)

$$
\begin{aligned}
& 3 x-4 y-2=0 \\
& x+2 y-4=0 \\
& 3 x-2 y+5=0
\end{aligned}
$$

This system of equations can be written in matrix form as

$$
\left.\begin{aligned}
& {\left[\begin{array}{ccc}
3 & -4 & -2 \\
1 & 2 & -4 \\
3 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \text { Taking } \\
& \quad\left|\begin{array}{ccc}
3 & -4 & -2 \\
1 & 2 & -4 \\
3 & -2 & 5
\end{array}\right| \\
& =3\left|\begin{array}{cc}
2 & -4 \\
-2 & 5
\end{array}\right|-(-4)\left|\begin{array}{cc}
1 & -4 \\
3 & 5
\end{array}\right|+(-2)\left|\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right| \\
& =3(10-8)+4(5+12)-2(-2-6) \\
& = \\
& = \\
& = \\
& =
\end{aligned} \right\rvert\, \begin{aligned}
& 90+68+16
\end{aligned}
$$

$\therefore \quad$ The given lines are not concurrent.
Q.17: Find a system of linear equations corresponding to the given matrix form.

Check whether the lines represented by the system are concurrent.
(a) $\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 0 & 1 \\ 0 & -1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 1 & 2 \\ 2 & 4 & -3 \\ 3 & 6 & -5\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Solution:
(a) $\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 0 & 1 \\ 0 & -1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\begin{aligned}
& x-1=0 \\
& 2 x+1=0 \\
& -y+2=0
\end{aligned}
$$

Taking $\left|\begin{array}{ccc}1 & 0 & -1 \\ 2 & 0 & 1 \\ 0 & -1 & 2\end{array}\right|$

$$
\begin{aligned}
& =1\left|\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right|-0\left|\begin{array}{cc}
2 & 1 \\
0 & 2
\end{array}\right|+(-1)\left|\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right| \\
& = \\
& =1(0+1)-0-1(-2-0) \\
& =\quad 3 \neq 0
\end{aligned}
$$

$\therefore \quad$ The lines are not concurrent.
(b) $\left[\begin{array}{rrc}1 & 1 & 2 \\ 2 & 4 & -3 \\ 3 & 6 & -5\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
x+y+2=0
$$

$$
2 x+4 y-3=0
$$

$$
3 x+6 y-5=0
$$

$$
\begin{array}{lll}
1 & 1 & 2
\end{array}
$$

Taking $\left|\begin{array}{ccc}1 & 1 & 2 \\ 2 & 4 & -3 \\ 3 & 6 & -5\end{array}\right|$
$=1\left|\begin{array}{ll}4 & -3 \\ 6 & -5\end{array}\right|-1\left|\begin{array}{ll}2 & -3 \\ 3 & -5\end{array}\right|+2\left|\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right|$
$=1(-20+18)-1(-10+9)+2(12-12)$
$=1(-2)-1(-1)+2(0)$
$=\quad-2+1$
$=\quad-1 \neq 0$
$\therefore \quad$ The lines are not concurrent.

