EXERCISE 4.5

Q:1 Find the lines represented by each of the following and also find measure of the angle between them (Problems 1-6).

1. $10 x^{2}-23 x y-5 y^{2}=0$
2. $3 x^{2}+7 x y+2 y^{2}=0 \quad$ (Lhr. Board 2009 (S))
3. $9 x^{2}+24 x y+16 y^{2}=0$
4. $2 x^{2}+3 x y-5 y^{2}=0$
5. $6 x^{2}-19 x y+15 y^{2}=0$
6. $x^{2}+2 x y \sec \alpha+y^{2}=0$

Solution:

$$
\begin{aligned}
& 10 x^{2}-23 x y-5 y^{2}=0 \\
& 10 x^{2}-25 x y+2 x y-5 y^{2}=0 \\
& 5 x(2 x-5 y)+y(2 x-5 y)=0
\end{aligned}
$$

Either
$2 \mathrm{x}-5 \mathrm{y}=0 \quad$ or $\quad 5 \mathrm{x}+\mathrm{y}=0$
Comparing the given equation with $a x^{2}+2 h x y+b y^{2}=0$
$\mathrm{a}=10$,
$2 h=-23$,
$b=-5$
$h=\frac{-23}{2}$

Let θ be an angle between the lines
$\tan \theta=\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}$
$\tan \theta=\frac{2 \sqrt{\left(\frac{-23}{2}\right)^{2}-(10)(-5)}}{10-5}$
$\tan \theta=\frac{2 \sqrt{\frac{529}{4}+50}}{5}$
$\tan \theta=\frac{2 \sqrt{\frac{529+200}{4}}}{5}$

$$
\begin{aligned}
& \tan \theta=\frac{2 \sqrt{\frac{729}{4}}}{5} \\
& \tan \theta=\frac{2\left(\frac{27}{2}\right)}{5} \\
& \tan \theta=\frac{27}{5} \\
& \begin{array}{ll}
\theta & =\tan ^{-1}\left(\frac{27}{5}\right) \\
\text { 2. } \quad & \\
& =79.51^{\circ}
\end{array} \text { Ans. } \\
& \begin{array}{ll}
3 x^{2}+7 x y+2 y^{2} & =0 \\
3 x^{2}+6 x y+x y+2 y^{2} & =0 \\
3 x(x+2 y)+y(x+2 y) & =0 \\
(x+2 y)(3 x+y) & =0
\end{array}
\end{aligned}
$$

(Guj. Board 2006) (Lhr. Board 2006)

Either
$x+2 y=0 \quad$ or $3 x+y=0$
Comparing the given equation with $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}=0$
$\mathrm{a}=3$,
$2 h=7$
$\mathrm{b}=2$
$\mathrm{h}=\frac{7}{2}$

Let θ be an angle between the lines.
$\tan \theta=\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}$
$\tan \theta=\frac{2 \sqrt{\left(\frac{7}{2}\right)^{2}-(3)(2)}}{3+2}$
$\tan \theta=\frac{2 \sqrt{\frac{49}{4}-6}}{5}$
$\tan \theta=\frac{2 \sqrt{\frac{25}{4}}}{5}$
$\tan \theta=\frac{2\left(\frac{5}{2}\right)}{5}$

$$
\begin{aligned}
\tan \theta & =\frac{5}{5} \\
\tan \theta & =1 \\
\theta & =\tan ^{-1}(1) \\
\theta & =45^{\circ} \quad \text { Ans }
\end{aligned}
$$

3. $9 x^{2}+24 x y+16 y^{2}=0$
$9 x^{2}+12 x y+12 x y+16 y^{2}=0$
$3 x(3 x+4 y)+4 y(3 x+4 y)=0$
$(3 \mathrm{x}+4 \mathrm{y})(3 \mathrm{x}+4 \mathrm{y})=0$
$3 \mathrm{x}+4 \mathrm{y}=0$
is the equation of two coincident lines passing through origin.
4. $2 x^{2}+3 x y-5 y^{2}=0$
$2 x^{2}+5 x y-2 x y-5 y^{2}=0$
$x(2 x+5 y)-y(2 x+5 y)=0$
$(2 x+5 y)(x-y)=0$
Either
$2 x+5 y=0 \quad$ or $\quad x-y=0$
Comparing the given equation with $a x^{2}+2 h x y+b y^{2}=0$
a $=2$,
$2 \mathrm{~h}=3$,
$\mathrm{b}=-5$
$h=\frac{3}{2}$

Let θ be an angle between the lines
$\tan \theta=\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}$
$\tan \theta=\frac{2 \sqrt{\left(\frac{3}{2}\right)^{2}-(2)(-5)}}{2-5}$
$\tan \theta=\frac{2 \sqrt{\frac{9}{4}+10}}{-3}=\frac{2 \sqrt{\frac{9+40}{4}}}{-3}$
$\tan \theta=\frac{-2 \sqrt{\frac{49}{4}}}{3}$
$\tan \theta=\frac{-2\left(\frac{7}{2}\right)}{3}$

$$
\begin{aligned}
\tan \theta & =\frac{-7}{3} \\
-\tan \theta & =\frac{7}{3} \\
\tan \left(180^{\circ}-\theta\right) & =\frac{7}{3} \\
180-\theta & =\tan ^{-1}\left(\frac{7}{3}\right) \\
180-\theta & =66.80^{\circ} \\
\theta & =180^{\circ}-66.80^{\circ} \\
\theta & =113.2^{\circ} \text { Ans. }
\end{aligned}
$$

5. $6 x^{2}-19 x y+15 y^{2}=0$
$6 x^{2}-10 x y-9 x y+15 y^{2}=0$
$2 x(3 x-5 y)-3 y(3 x-5 y)=0$
$(3 \mathrm{x}-5 \mathrm{y})(2 \mathrm{x}-3 \mathrm{y})=0$
Either

$$
3 x-5 y=0 \quad \text { or } \quad 2 x-3 y=0
$$

Comparing the given equation with $a x^{2}+2 h x y+b y^{2}=0$
$\mathrm{a}=6$,
$2 h=-19$,
$b=15$
$\mathrm{h}=\frac{-19}{2}$

Let ' θ ' be an angle between the lines
$\tan \theta=\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}$
$\tan \theta=\frac{2 \sqrt{\left(\frac{-19}{2}\right)^{2}-(6)(15)}}{6+15}$
$\tan \theta=\frac{2 \sqrt{\frac{361}{4}-90}}{21}$
$\tan \theta=\frac{2 \sqrt{\frac{361-360}{4}}}{21}$
$\tan \theta=\frac{2 \sqrt{\frac{1}{4}}}{21}$

$$
\begin{aligned}
\tan \theta & =\frac{2\left(\frac{1}{2}\right)}{21} \\
\tan \theta & =\frac{1}{21} \\
\theta & =\tan ^{-1}\left(\frac{1}{21}\right) \\
\theta & =2.73^{\circ}
\end{aligned}
$$

6. $x^{2}+2 x y \sec \alpha+y^{2} \quad=0$

Dividing both sides by x^{2}
$\frac{y^{2}}{x^{2}}+\frac{2 x y \sec \alpha}{x^{2}}+\frac{x^{2}}{x^{2}}=\frac{0}{x^{2}}$
$\left(\frac{y}{x}\right)^{2}+2\left(\frac{y}{x}\right) \sec \alpha+1=0$
Equation is quadratic in $\frac{y}{x}$
So,

$$
\begin{array}{ll}
\mathrm{a}=1 & , \quad \mathrm{~b}=2 \sec \alpha, \mathrm{c}=1 \\
\frac{\mathrm{y}}{\mathrm{x}} \quad=\frac{-2 \sec \alpha \pm \sqrt{(2 \sec \alpha)^{2}-4(1)(1)}}{2(1)} \\
\frac{\mathrm{y}}{\mathrm{x}} \quad=\frac{-2 \sec \alpha \pm \sqrt{\sec ^{2} \alpha-1}}{2} \\
\frac{y}{x} \quad=-\sec \alpha \pm \tan \alpha \\
\frac{y}{x} \quad=-\frac{1}{\cos \alpha} \pm \frac{\sin \alpha}{\cos \alpha} \\
\frac{y}{x} \quad=\frac{-1 \pm \sin \alpha}{\cos \alpha} \\
x(1-\sin \alpha)+\mathrm{y} \cos \alpha=0 \\
x(1+\sin \alpha)+\mathrm{y} \cos \alpha=0 \\
\hline
\end{array}
$$

Comparing the given equation with $a x^{2}+2 h x y+b y^{2}=0$
$\mathrm{a}=1$,
$2 \mathrm{~h}=2 \sec \alpha$,
b $=1$
$\mathrm{h}=\sec \alpha$

Let θ be an angle between the lines.

$$
\begin{aligned}
\tan \theta & =\frac{2 \sqrt{h^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}} \\
\tan \theta & =\frac{2 \sqrt{\sec ^{2} \alpha-(1)(1)}}{1+1} \\
\tan \theta & =\frac{2 \sqrt{\sec ^{2} \alpha-1}}{2} \\
\tan \theta & =\sqrt{\tan ^{2} \alpha} \\
\tan \theta & =\tan \alpha \\
\theta & =\alpha
\end{aligned}
$$

Q. 7 Find a joint equation of the lines through the origin and perpendicular to the lines $x^{2}-2 x y \tan \alpha-y^{2}=0$

Solution:

$$
\begin{aligned}
& x^{2}-2 x y \tan \alpha-y^{2}=0 \\
& \text { Compare it with } \\
& a x^{2}+2 h x y+b y^{2}=0 \\
& \mathrm{a} \quad=1, \quad 2 \mathrm{~h}=-2 \tan \alpha, \quad \mathrm{~b}=-1 \\
& \mathrm{~h}=-\tan \alpha
\end{aligned}
$$

Let m_{1}, m_{2} be the slopes of given lines.

$$
\begin{aligned}
\mathrm{m}_{1}+\mathrm{m}_{2} & =\frac{-2 \mathrm{~h}}{\mathrm{~b}} \\
& =\frac{-2(-\tan \alpha)}{-1}=-2 \tan \alpha \\
\mathrm{~m}_{1} \mathrm{~m}_{2} & =\frac{\mathrm{a}}{\mathrm{~b}} \\
& =\frac{1}{-1} \quad=-1
\end{aligned}
$$

Slopes of lines perpendicular to given lines are $\frac{-1}{\mathrm{~m}_{1}}$ and $\frac{-1}{\mathrm{~m}_{2}}$

$$
\begin{array}{lll}
\mathrm{y} & =\frac{-1}{\mathrm{~m}_{1}} \mathrm{x} & \text { and } \\
\mathrm{m}_{1} \mathrm{y}=-\mathrm{x} & \mathrm{y}=-\frac{1}{\mathrm{~m}_{2}} \mathrm{x} \\
\mathrm{x}+\mathrm{m}_{1} \mathrm{y}=0 & \text { and } & \mathrm{m}_{2} \mathrm{y}=-\mathrm{x} \\
& \mathrm{x}+\mathrm{m}_{2} \mathrm{y}=0
\end{array}
$$

So the joint eq. is

$$
\begin{aligned}
& \left(x+m_{1} y\right)\left(x+m_{2} y\right)=0 \\
& x^{2}+m_{2} x y+m_{1} x y+m_{1} m_{2} y^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+\left(m_{1}+m_{2}\right) x y+m_{1} m_{2} y^{2}=0 \\
& x^{2}+(-2 \tan \alpha) x y+(-1) y^{2}=0 \\
& x^{2}-2 \tan \alpha x y-y^{2}=0 \quad \text { Ans }
\end{aligned}
$$

Q. 8 Find a joint equation of the lines through the origin and perpendicular to the lines $a x^{2}+2 h x y+b y^{2}=0$

Solution:

$$
a x^{2}+2 h x y+b y^{2}=0
$$

Let $\mathrm{m}_{1}, \mathrm{~m}_{2}$ be the slopes of given lines.

$$
\begin{array}{ll}
\mathrm{m}_{1}+\mathrm{m}_{2} & =\frac{-2 \mathrm{~h}}{\mathrm{~b}} \\
\mathrm{~m}_{1} \mathrm{~m}_{2} & =\frac{\mathrm{a}}{\mathrm{~b}}
\end{array}
$$

Slopes of lines perpendicular to given lines are $\frac{-1}{\mathrm{~m}_{1}}$ and $\frac{-1}{\mathrm{~m}_{2}}$ then their equations are

$$
\begin{array}{llll}
y & =\frac{-1}{m_{1}} & x & \text { and } \\
m_{1} y=-x & y & =\frac{-1}{m_{2}} x \\
x+m_{1} y=0 & \text { and } & m_{2} y=-x \\
\text { and } & x+m_{2} y=0
\end{array}
$$

So the joint equation is
$\left(x+m_{1} y\right)\left(x+m_{2} y\right)=0$
$x^{2}+m_{2} y x+m_{1} y x+m_{1} m_{2} y^{2}=0$
$x^{2}+\left(m_{1}+m_{2}\right) x y+m_{1} m_{2} y^{2}=0$
$x^{2}-\frac{2 h}{b} x y+\frac{a}{b} y^{2}=0$
$\frac{b x^{2}-2 h x y+a y^{2}}{b}=0$
$b x^{2}-2 h x y+a y^{2}=0 \quad$ Ans.

Q. 9 Find the area of the region bounded by

$$
10 x^{2}-x y-21 y^{2}=0 \quad \text { and } \quad x+y+1=0
$$

Solution:

$$
\begin{array}{ll}
10 x^{2}-x y-21 y^{2} & =0 \tag{1}\\
x+y+1 & =0
\end{array}
$$

From equation (1)
$10 x^{2}-x y-21 y^{2}=0$
$10 x^{2}-15 x y+14 x y-21 y^{2}=0$

$$
\begin{align*}
& 5 x(2 x-3 y)+7 y(2 x-3 y)=0 \\
& (2 x-3 y)(5 x+7 y) \quad=0 \\
& 2 x-3 y \quad=0 \quad \text {.... (3) or } \quad 5 x+7 y=0 \tag{4}
\end{align*}
$$

Let $A(x, y)$ be the point of intersection of equation (3) and equation (4) since equation (3) and equation (4) passing through origin so the point of intersection of (3) and (4) is A $(0,0)$.

Let $\mathrm{B}(\mathrm{x}, \mathrm{y})$ be the point of intersection of equation (2) and (3).
Equation (2) $\times 3+$ Equation (3), we get

$$
\begin{array}{ll}
3 x+3 y+3 & =0 \\
2 x-3 y & =0 \\
\hline 5 x+3=0 \\
5 x \quad=-3
\end{array}
$$

$$
\text { Put } x=\frac{-3}{5} \text { in eq. (3) }
$$

$$
2\left(\frac{-3}{5}\right)-3 y=0
$$

$$
\frac{-6}{5}=3 y
$$

$$
y=\frac{-6}{15}=\frac{-2}{5}
$$

$$
\therefore \quad B(x, y)=B\left(\frac{-3}{5}, \frac{-2}{5}\right)
$$

Let $C(x, y)$ be the point of intersection of equation (2) and equation (4)
Equation (2) $\times 5-$ Equation (4), we get

$$
\begin{aligned}
5 x+5 y+5 & =0 \\
-5 x \pm 7 y & =0 \\
\hline-2 y+5 & =0 \\
-2 y & =-5 \\
y & =\frac{5}{2}
\end{aligned}
$$

Put $y=\frac{5}{2}$ in equation (4)

$$
5 x+7\left(\frac{5}{2}\right)=0
$$

$$
\begin{aligned}
& 5 x+\frac{35}{2} \\
& =0 \\
& 5 x=\frac{-35}{2} \\
& x=\frac{-35}{10}=\frac{-7}{2} \\
\therefore \quad & C(x, y)=C\left(\frac{-7}{2}, \frac{5}{2}\right)
\end{aligned}
$$

Area of region ABC is

$$
\begin{aligned}
& =\frac{1}{2}\left|\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
& \left.=\frac{1}{0} \begin{array}{ccc}
2 \\
\frac{-3}{5} & \frac{-2}{5} & 1 \\
\frac{-7}{2} & \frac{5}{2} & 1
\end{array} \right\rvert\, \\
& =\frac{1}{2}\left|\begin{array}{cc}
\frac{-3}{5} & \frac{-2}{5} \\
\frac{-7}{2} & \frac{5}{2}
\end{array}\right| \\
& =\frac{1}{2}\left(\frac{-15}{10}-\frac{14}{10}\right) \\
& =\frac{1}{2}\left(\frac{-29}{10}\right)=\frac{29}{20} \\
& \text { Sq. unit } \quad \text { (Neglecting - ve sign) } \quad \text { Ans }
\end{aligned}
$$

