Chapter 5

LINEAR INEQUALITIES AND LINEAR PROGRAMMING

EXERCISE 5.1

Q.1: Graph the solution set of each of the following linear inequality in $x y$-plane.
(i) $2 x+y \leq 6$
(ii) $3 x+7 y \geq 21$
(iii) $3 x-2 y \geq 6$
(iv) $5 x-4 y \leq 20$
(v) $2 \mathrm{x}+1 \geq 0$
(vi) $\quad 3 y-4 \leq 0$

Solution:
(i) $2 \mathrm{x}+\mathrm{y} \leq 6$

The associated equation is
$2 x+y=6$
(1)
x-intercept

$$
\begin{aligned}
& \text { Put } \mathrm{y}=0 \text { in eq. (1) } \\
& 2 \mathrm{x}+0=6 \\
& \mathrm{x} \quad=\frac{6}{2}=3
\end{aligned}
$$

$\therefore \quad$ Point is $(3,0)$
y -intercept
Put $\mathrm{x}=0$ in eq. (1)
$2(0)+y=6$
$y=6$
$\therefore \quad$ Point is $(0,6)$
Test Point

$$
\begin{aligned}
& \text { Put } \quad(0,0) \text { in } \\
& 2 x+y<6
\end{aligned}
$$

$$
\begin{aligned}
& 2(0)+0<6 \\
& 0<6
\end{aligned}
$$

Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+\mathrm{y} \leq 6$ will be towards the origin side.

The associated equation is

$$
\begin{equation*}
3 x+7 y=21 \tag{1}
\end{equation*}
$$

x -intercept
Put $y=0$ in eq. (1)
$3 x+7(0)=21$
$3 \mathrm{x}=21$

$$
x=\frac{21}{3}=7
$$

$\therefore \quad$ Point is $(7,0)$
y-intercept

$$
\begin{aligned}
\text { Put } \quad \mathrm{x} & =0 \text { in eq. (1) } \\
3(0)+7 \mathrm{y} & =21 \\
7 \mathrm{y} & =21
\end{aligned}
$$

$$
y=\frac{21}{7}=3
$$

$\therefore \quad$ Point is $(0,3)$
Test Point

Put $\quad(0,0)$ in	
$3 x+7 y$	>21
$3(0)+7(0)$	>21
$0>21$	

Which is false.
$\therefore \quad$ Graph of an inequality $3 x+7 y \geq 21$ will not be towards the origin side.

(iii) $3 x-2 y \geq 6$

The associated equation is

$$
\begin{equation*}
3 x-2 y=6 \tag{1}
\end{equation*}
$$

x-intercept
Put $y=0$ in eq. (1)
$3 \mathrm{x}-2(0)=6$
$3 \mathrm{x}=6$

$$
\mathrm{x}=\frac{6}{3}=2
$$

$\therefore \quad$ Point is $(2,0)$
y-intercept

$$
\begin{aligned}
\text { Put } \mathrm{x} & =0 \text { in eq. (1) } \\
3(0)-2 \mathrm{y} & =6 \\
-2 \mathrm{y} & =6 \\
y & =\frac{6}{-2}=-3
\end{aligned}
$$

$\therefore \quad$ Point is $(0,-3)$
Test Point

$$
\begin{array}{ll}
\text { Put }(0,0) \text { in } \\
3 x-2 y & >6 \\
3(0)+2(0) & >6 \\
0>6 &
\end{array}
$$

Which is false.
$\therefore \quad$ Graph of an inequality $3 x-2 y \geq 6$ will not be towards the origin side.

(iv) $\quad 5 x-4 y \leq 20$

The associated equation is
$5 \mathrm{x}-4 \mathrm{y}=20$
x-intercept

$$
\text { Put } \begin{aligned}
& \mathrm{y}=0 \text { in eq. }(1) \\
& 5 \mathrm{x}-4(0)=20 \\
& 5 \mathrm{x}=20 \\
& \mathrm{x}=\frac{20}{5}=4
\end{aligned}
$$

$\therefore \quad$ Point is $(4,0)$
y-intercept

$$
\begin{aligned}
\text { Put } x & =0 \text { in eq. (1) } \\
5(0)-4 y & =20 \\
-4 y & =20 \\
y & =\frac{20}{-4}=-5
\end{aligned}
$$

$\therefore \quad$ Point is $(0,-5)$
Test Point

$$
\begin{aligned}
& \text { Put }(0,0) \text { in } \\
& \begin{aligned}
5 \mathrm{x}-4 \mathrm{y} & <20 \\
5(0)-4(0) & <20 \\
0 & <20
\end{aligned}
\end{aligned}
$$

Which is true.
$\therefore \quad$ Graph of an inequality $5 x-4 y \leq 20$ will be towards the origin side.

(v) $2 \mathrm{x}+1 \geq 0$

The associated equation is

$$
\begin{array}{ll}
2 \mathrm{x}+1 & =0 \\
2 \mathrm{x} & =-1 \\
\mathrm{x} & =\frac{-1}{2}
\end{array}
$$

Put $x=0$ in
$2 \mathrm{x}+1>0$
$2(0)+1>0$
$1>0$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+1 \geq 0$ will be towards the origin side.

(vi) $3 y-4 \leq 0$

The associated equation is
$3 y-4=0$
$3 y=4$
$\mathrm{y}=\frac{4}{3}$

Put $y=0$ in
$3 y-4<0$
$3(0)-4<0$
$-4<0$
Which is true.
$\therefore \quad$ Graph of an inequality $3 y-4 \leq 0$ will be towards the origin side.

Q.2: Indicate the solution set of the following systems of linear inequalities by shading.
(i) $2 x-3 y \leq 6$
$2 \mathrm{x}+3 \mathrm{y} \leq 12$
(ii) $x+y \geq 5$
$\mathrm{x}-\mathrm{y} \leq 1$
(iii) $\quad \begin{aligned} & 3 x+7 y \geq 21 \\ & \\ & x-y \leq 2\end{aligned}$
(iv) $4 x-3 y \leq 12$
$\mathbf{x} \geq \frac{-3}{2}$
(Lhr. Board 2011) (Guj. Board 2008)
(v) $\quad 3 \mathrm{x}+7 \mathrm{y} \geq 21$
(Lhr. Board 2011)

$$
\mathbf{y} \leq 4
$$

Solution:

(i) $2 x-3 y \leq 6$
$2 \mathrm{x}+3 \mathrm{y} \leq 12$
The associated equations are

$$
\begin{align*}
2 x-3 y & =6 \tag{1}\\
2 x+3 y & =12 \tag{2}
\end{align*}
$$

\underline{x}-intercept

$$
\text { Put } \begin{aligned}
& \mathrm{y}=0 \text { in eq. (1) } \\
& 2 \mathrm{x}-3(0)=6 \\
& 2 \mathrm{x}=6 \\
& \mathrm{x} \quad=\frac{6}{2}=3
\end{aligned}
$$

$\therefore \quad$ Point is $(3,0)$
y-intercept

$$
\begin{aligned}
\text { Put } x & =0 \text { in eq. (1) } \\
2(0)-3 y & =6 \\
-3 y & =6
\end{aligned}
$$

$$
y=\frac{6}{-3}=-2
$$

$\therefore \quad$ Point is $(0,-2)$
x-intercept

$$
\text { Put } y=0 \text { in eq. (2) }
$$

$$
2 x+3(0)=12
$$

$$
2 \mathrm{x}=12
$$

$$
x=\frac{12}{2}=6
$$

$\therefore \quad$ Point is $(6,0)$
y-intercept

$$
\begin{aligned}
& \text { Put } \quad \mathrm{x}=0 \text { in eq. (2) } \\
& 2(0)+3 \mathrm{y}=12 \\
& 3 \mathrm{y} \quad=12 \\
& \mathrm{y} \quad=\frac{12}{3}=4
\end{aligned}
$$

$\therefore \quad$ Point is $(0,4)$

Test Point

Put $(0,0)$ in

$$
2 x-3 y<6
$$

$$
\begin{aligned}
& 2(0)-3(0)<6 \\
& 0<6
\end{aligned}
$$

Which is true.
$\therefore \quad$ Graph of an inequality $2 x-3 y \leq 6$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}+3 \mathrm{y}<12$
$2(0)-3(0)<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+3 \mathrm{y} \leq 12$ will be towards the origin side.

(ii) $\mathbf{x}+\mathbf{y} \geq 5$
$\mathbf{x}-\mathbf{y} \leq \mathbf{1}$
The associated equations are

$$
\begin{align*}
\mathrm{x}+\mathrm{y} & =5 \tag{1}\\
\mathrm{x}-\mathrm{y} & =1 \tag{2}\\
\frac{\text { cept }}{} & \ldots . .(1) \\
\text { Put } & \mathrm{y}=0 \\
& \\
& \mathrm{x}+0 \\
& =5 \\
\mathrm{x} & =5
\end{align*}
$$

x-intercept
$\therefore \quad$ Point is $(5,0)$
y-intercept
Put $\mathrm{x}=0$ in eq. (1)

$$
0+y=5
$$

$$
y=5
$$

$\therefore \quad$ Point is $(0,5)$
x-intercept
Put $y=0$ in eq. (2)
$\mathrm{x}-0=1$
$x=1$
$\therefore \quad$ Point is $(1,0)$
y-intercept
Put $x=0$ in eq. (2)
$0-y=1$
$y=-1$
$\therefore \quad$ Point is $(0,-1)$
Test Point
Put $(0,0)$ in
$\mathrm{x}+\mathrm{y}>5$
$0+0>5$
$0>5$
Which is false.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+\mathrm{y} \geq 5$ will not be towards the origin side.
Put $(0,0)$ in
$\mathrm{x}-\mathrm{y}<1$
$0-0<1$
$0<1$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}-\mathrm{y} \leq 1$ will be towards the origin side.

(iii) $3 x+7 y \geq 21$

$$
x-y \leq 2
$$

The associated equations are

$$
\begin{array}{ll}
3 x+7 y & =21 \\
x-y & =2 \tag{2}
\end{array}
$$

x-intercept

$$
\text { Put } \begin{aligned}
& \mathrm{y}=0 \text { in eq. (1) } \\
& 3 \mathrm{x}+7(0)=21 \\
& 3 \mathrm{x}=21 \\
& \mathrm{x} \quad=\frac{21}{3}=7
\end{aligned}
$$

$\therefore \quad$ Point is $(7,0)$
y -intercept
Put $x=0$ in eq. (1)

$$
\begin{aligned}
3(0)+7 y & =21 \\
7 y & =21 \\
y & =\frac{21}{7}=3
\end{aligned}
$$

$\therefore \quad$ Point is $(0,3)$
x-intercept

$$
\text { Put } \begin{aligned}
& \mathrm{y}=0 \text { in eq. (2) } \\
& \mathrm{x}-0=2 \\
& \mathrm{x}=2
\end{aligned}
$$

$\therefore \quad$ Point is $(2,0)$
y -intercept
Put $x=0$ in eq. (2)
$0-y=2$

$$
y=-2
$$

$\therefore \quad$ Point is $(0,-2)$

Test Point

$$
\begin{aligned}
& \text { Put } \quad(0,0) \text { in } \\
& 3 x+7 y \quad>21
\end{aligned}
$$

$$
\begin{aligned}
& 3(0)+7(0)>21 \\
& 0>21
\end{aligned}
$$

Which is false.
$\therefore \quad$ Graph of an inequality $3 x+7 y \geq 21$ will not be towards the origin side.
Put $(0,0)$ in

$$
\begin{aligned}
& x-y<2 \\
& 0-0<2 \\
& 0<2
\end{aligned}
$$

Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}-\mathrm{y} \leq 2$ will be towards the origin side.

(iv) $4 x-3 y \leq 12$
$\mathbf{x} \geq \frac{-3}{2}$
The associated equations are
$4 x-3 y=12$

$$
\begin{equation*}
x=\frac{-3}{2} \tag{2}
\end{equation*}
$$

x-intercept

$$
\text { Put } \begin{aligned}
& \mathrm{y}=0 \text { in eq. (1) } \\
& 4 \mathrm{x}-3(0)=12 \\
& 4 \mathrm{x}=12 \\
& \\
& \mathrm{x}=\frac{21}{4}=3
\end{aligned}
$$

$\therefore \quad$ Point is $(3,0)$
y-intercept
Put $\quad x=0$ in eq. (1)

$$
4(0)-3 y=12
$$

$$
-3 y=12
$$

$$
y=\frac{12}{-3}=-4
$$

$\therefore \quad$ Point is $(0,-4)$

Test Point

Put $(0,0)$ in

$$
\begin{array}{ll}
4 x-3 y & <12 \\
4(0)-3(0) & <12
\end{array}
$$

$$
0<12
$$

Which is true.
$\therefore \quad$ Graph of an inequality $4 x-3 y \leq 12$ will be towards the origin side.

$$
\begin{aligned}
& \text { Put } x=0 \text { in } \\
& x>\frac{-3}{2} \\
& 0>\frac{-3}{2}
\end{aligned}
$$

Which is true.
$\therefore \quad$ Graph of an inequality $x \geq \frac{-3}{2}$ will be towards the origin side.
(v) $3 x+7 y \geq 21$

$\mathbf{y} \leq \mathbf{4}$

The associated equations are

$$
\begin{align*}
3 x+7 y & =21 \tag{1}\\
y & =4 \tag{2}
\end{align*}
$$

x-intercept

$$
\text { Put } \begin{aligned}
& \mathrm{y}=0 \text { in eq. (1) } \\
& 3 \mathrm{x}+7(0)=21 \\
& 3 \mathrm{x}=21 \\
& \\
& \mathrm{x} \quad=\frac{21}{3}=7
\end{aligned}
$$

$\therefore \quad$ Point is $(7,0)$
y -intercept
Put $x=0$ in eq. (1)

$$
3(0)+7 y=21
$$

$$
7 y=21
$$

$$
y=\frac{21}{7}=3
$$

$\therefore \quad$ Point is $(0,3)$
Test Point

Put $\quad(0,0)$	in	
$3 x+7 y$	>21	
$3(0)+7(0)$	>21	
$0>21$		
$l l l$		

Which is false.
$\therefore \quad$ Graph of an inequality $3 x+7 y \geq 21$ will not be towards the origin side.
Put $y=0$ in
$\mathrm{y}<4$
$0<4$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{y} \leq 4$ will be towards the origin side.

Q.3: Indicate the solution region of the following systems of linear inequalities by shading.
(i) $2 x-3 y \leq 6$
$2 \mathrm{x}+3 \mathrm{y} \leq 12$
(ii) $\mathrm{x}+\mathrm{y} \leq 5$
$y-2 x \leq 2$
(iii) $x+y \geq 5$
$x \geq 0$
$x-y \geq 1$
$\mathrm{y} \geq 0$
$\mathrm{y} \geq 0$

(iv)	$3 \mathrm{x}+7 \mathrm{y} \leq 21$	(v)	$3 \mathrm{x}+7 \mathrm{y} \leq 21$	(vi)	$3 \mathrm{x}+7 \mathrm{y} \leq 21$
	$x-y \leq 2$		$x-y \leq 2$		$2 \mathrm{x}-\mathrm{y} \geq-3$
	$\mathbf{x} \geq 0$		$\mathrm{y} \geq 0$		$\mathbf{x} \geq 0$

Solution:

(i) $2 x-3 y \leq 6 \quad$ (Lhr. Board 2007) $2 \mathrm{x}+3 \mathrm{y} \leq 12$

$$
\mathbf{y} \geq 0
$$

The associated equations are

$$
\begin{align*}
2 x-3 y & =6 \tag{1}\\
2 x+3 y & =12 \tag{2}
\end{align*}
$$

x-intercept
Put $\quad \mathrm{y}=0$ in eq. (1)

$$
2 x-3(0)=6
$$

$$
2 x=6
$$

$$
\mathrm{x} \quad=\frac{6}{2}=3
$$

$\therefore \quad$ Point is $(3,0)$
y-intercept

$$
\begin{aligned}
\text { Put } x= & 0 \text { in eq. (1) } \\
2(0)-3 y & =6 \\
-3 y & =6 \\
y & =\frac{6}{-3}=-2
\end{aligned}
$$

$\therefore \quad$ Point is $(0,-2)$
\underline{x}-intercept

$$
\begin{aligned}
\text { Put } \quad \mathrm{y} & =0 \text { in eq. (2) } \\
2 \mathrm{x}+3(0) & =12 \\
2 \mathrm{x} & =12 \\
\mathrm{x} & =\frac{12}{2}=6
\end{aligned}
$$

$\therefore \quad$ Point is $(6,0)$
y-intercept
Put $x=0$ in eq. (2)

$$
\begin{aligned}
2(0)+3 y & =12 \\
3 y & =12 \\
y & =\frac{12}{3}=4
\end{aligned}
$$

$\therefore \quad$ Point is $(0,4)$

Test Point

Put $(0,0)$ in
$2 \mathrm{x}-3 \mathrm{y}<6$
$2(0)-3(0)<6$
$0<6$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}-3 \mathrm{y} \leq 6$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}+3 \mathrm{y}<12$
$2(0)+3(0)<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+3 \mathrm{y} \leq 12$ will be towards the origin side.

(ii) $\mathrm{x}+\mathrm{y} \leq 5$
$\mathrm{y}-2 \mathrm{x} \leq 2$
$\mathbf{x} \geq 0$

The associated equations are

$$
\begin{align*}
& x+y=5 \tag{1}\\
& y-2 x=2 \tag{2}
\end{align*}
$$

x-intercept
Put $y=0$ in eq. (1)

$$
x+0=5
$$

$$
x=5
$$

$\therefore \quad$ Point is $(5,0)$
y-intercept
Put $\mathrm{x}=0$ in eq. (1)

$$
0+y=5
$$

$$
y=5
$$

$\therefore \quad$ Point is $(0,5)$
x-intercept

$$
\begin{aligned}
\text { Put } \mathrm{y} & =0 \text { in eq. (2) } \\
0-2 \mathrm{x} & =2 \\
\mathrm{x} & =\frac{2}{-2}=-1
\end{aligned}
$$

$\therefore \quad$ Point is $(-1,0) \quad$ TAL $=$ EVOMN 0.0M
y -intercept

$$
\begin{aligned}
\text { Put } \quad \mathrm{x} & =0 \text { in eq. (2) } \\
\mathrm{y}-2(0) & =2 \\
\mathrm{y} & =2
\end{aligned}
$$

$\therefore \quad$ Point is $(0,2)$
Test Point
Put $(0,0)$ in
$x+y<5$
$0+0<5$
$0<5$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+\mathrm{y} \leq 5$ will towards the origin side.
Put $(0,0)$ in

$$
\begin{aligned}
& y-2 x<2 \\
& 0-2(0)<2 \\
& 0<2
\end{aligned}
$$

Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{y}-2 \mathrm{x} \leq 2$ will towards the origin side.
(iii) $\mathbf{x}+\mathrm{y} \geq 5$
$x-y \geq 1$
$\mathbf{y} \geq 0$
The associated equations are $=3 M 0117.00 \mathrm{M}$

$$
\begin{align*}
& x+y=5 \tag{1}\\
& x-y=1 \tag{2}
\end{align*}
$$

$\underline{\mathrm{x} \text {-intercept }}$

$$
\begin{aligned}
& \text { Put } \mathrm{y}=0 \text { in eq. (1) } \\
& \mathrm{x}+0=5 \\
& \mathrm{x} \\
& =5
\end{aligned}
$$

$\therefore \quad$ Point is $(5,0)$
y -intercept
Put $x=0$ in eq. (1)
$0+y=5$
$\mathrm{y}=5$
$\therefore \quad$ Point is $(0,5)$
$\underline{\text { x-intercept }}$

$$
\begin{aligned}
& \text { Put } y=0 \text { in eq. (2) } \\
& x-0=1 \\
& \mathrm{x}=1 \\
& \therefore \quad \text { Point is }(1,0) \\
& \text { y-intercept } \\
& \text { Put } x=0 \text { in eq. (2) } \\
& 0-\mathrm{y}=1 \\
& \mathrm{y}=-1
\end{aligned}
$$

$\therefore \quad$ Point is $(0,-1)$

Test Point

Put $(0,0)$ in
$x+y>5$
$0+0>5$
$0>5$
Which is false.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+\mathrm{y} \geq 5$ will not be towards the origin side.
Put $(0,0)$ in
$\mathrm{x}-\mathrm{y}>1$
$0-0>1$
$0>1$

Which is false.
$\therefore \quad$ Graph of an inequality $\mathrm{x}-\mathrm{y} \geq 1$ will not be towards the origin side.
(iv) $3 x+7 y \leq 21$

$$
\begin{array}{ll}
\mathbf{x}-\mathbf{y} & \leq 2 \\
\mathbf{x} & \geq \mathbf{0}
\end{array}
$$

The associated equations are

$$
\begin{array}{ll}
3 x+7 y & =21 \\
x-y & =2 \tag{2}
\end{array}
$$

x-intercept

$$
\begin{aligned}
\text { Put } y & =0 \text { in eq. (1) } \\
3 \mathrm{x}+7(0) & =21 \\
3 \mathrm{x} & =21 \\
\mathrm{x} & =\frac{21}{3}=7
\end{aligned}
$$

$\therefore \quad$ Point is $(7,0)$
y -intercept

$$
\begin{aligned}
\text { Put } x & =0 \text { in eq. (1) } \\
3(0)+7 y & =21 \\
7 y & =21 \\
y & =\frac{21}{7} \quad=3
\end{aligned}
$$

$\therefore \quad$ Point is $(0,3)$
$\underline{\mathrm{x} \text {-intercept }}$

$$
\begin{aligned}
& \text { Put } \mathrm{y}=0 \text { in eq. (2) } \\
& \mathrm{x}-0=2 \\
& \mathrm{x} \\
& =2
\end{aligned}
$$

\therefore Point is $(2,0)$
y -intercept
Put $x=0$ in eq. (2)
$0-y=2$
$\mathrm{y}=-2$
$\therefore \quad$ Point is $(0,-2)$

Test Point

Put $(0,0)$ in

$$
\begin{array}{ll}
3 x+7 y & <21 \\
3(0)+7(0) & <21 \\
0<21 &
\end{array}
$$

Which is true.
$\therefore \quad$ Graph of an inequality $3 \mathrm{x}+7 \mathrm{y} \leq 21$ will be towards the origin side.
Put $(0,0)$ in
$\mathrm{x}-\mathrm{y}<2$
$0-0<2$
$0<2$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}-\mathrm{y} \leq 2$ will be towards the origin side.

(v) $3 x+7 y \leq 21 \quad$ (Gujranwala Board 2007)
$\mathbf{x}-\mathrm{y} \leq 2$
$\mathbf{y} \geq \mathbf{0}$
The associated equations are
$3 x+7 y=21$
$\mathrm{x}-\mathrm{y}=2$
x-intercept
Put $\quad \mathrm{y}=0$ in eq. (1)

$$
\begin{aligned}
3 \mathrm{x}+7(0) & =21 \\
3 \mathrm{x} & =21 \\
\mathrm{x} & =\frac{21}{3}=7
\end{aligned}
$$

$\therefore \quad$ Point is $(7,0)$
y -intercept

$$
\begin{aligned}
\text { Put } \quad \mathrm{x} & =0 \text { in eq. (1) } \\
3(0)+7 \mathrm{y} & =21 \\
7 \mathrm{y} & =21 \\
y & =\frac{21}{7}=3
\end{aligned}
$$

$\therefore \quad$ Point is $(0,3)$
x-intercept

$$
\begin{aligned}
& \text { Put } \mathrm{y}=0 \text { in eq. (2) } \\
& \mathrm{x}-0=2 \\
& \mathrm{x} \\
& =2
\end{aligned}
$$

\therefore Point is $(2,0)$
y-intercept

$\mathrm{y}=-2$
$\therefore \quad$ Point is $(0,-2)$

Test Point

Put $(0,0)$ in
$3 \mathrm{x}+7 \mathrm{y}<21$
$3(0)+7(0)<21$
$0<21$
Which is true.
$\therefore \quad$ Graph of an inequality $3 x+7 y \leq 21$ will be towards the origin side.
Put $(0,0)$ in
$x-y<2$
$0-0<2$
$0<2$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}-\mathrm{y} \leq 2$ will be towards the origin side.

The associated equations are

$$
\begin{array}{ll}
3 x+7 y & =21 \\
2 x-y & =-3 \tag{2}
\end{array}
$$

x-intercept

$$
\begin{aligned}
\text { Put } \mathrm{y} & =0 \text { in eq. (1) } \\
3 \mathrm{x}+7(0) & =21 \\
3 \mathrm{x} & =21 \\
\mathrm{x} & =\frac{21}{3}=7
\end{aligned}
$$

$\therefore \quad$ Point is $(7,0)$
y -intercept

$$
\begin{aligned}
\text { Put } \quad x & =0 \text { in eq. (1) } \\
3(0)+7 y & =21 \\
7 y & =21 \\
y & =\frac{21}{7}=3
\end{aligned}
$$

$\therefore \quad$ Point is $(0,3)$
x-intercept
Put $y=0$ in eq. (2)
$2 \mathrm{x}-0=-3$
$x=\frac{-3}{2}$
\therefore Point is $\left(\frac{-3}{2}, 0\right)$
y-intercept

$$
\begin{aligned}
& \text { Put } \quad \mathrm{x}=0 \text { in eq. (2) } \\
& 2(0)-\mathrm{y}=-3 \\
& -\mathrm{y}=-3 \\
& \mathrm{y} \quad=3
\end{aligned}
$$

$\therefore \quad$ Point is $(0,3)$

Test Point

$$
\begin{array}{ll}
\text { Put } \quad(0,0) \text { in } \\
3 x+7 y & <21 \\
3(0)+7(0) & <21
\end{array}
$$

$$
0<21
$$

Which is true.
$\therefore \quad$ Graph of an inequality $3 \mathrm{x}+7 \mathrm{y} \leq 21$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}-\mathrm{y}>-3$
$2(0)-0>-3$
$0>-3$

Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}-\mathrm{y} \geq-3$ will be towards the origin side.

Q.4: Graph the solution region of the following system of linear inequalities and find the corner points in each case.
(i)
(ii)
$\mathrm{x}+\mathrm{y} \leq 5$
$2 x+3 y \leq 12$
$-2 \mathrm{x}+\mathrm{y} \leq 2$
(iii) $\quad 3 \mathrm{x}+7 \mathrm{y} \leq 21$

$$
2 x-y \leq-3
$$

$$
\mathbf{x} \geq 0
$$

$$
\mathbf{y} \geq 0
$$

$$
\mathbf{y} \geq \mathbf{0}
$$

(iv) $3 x+2 y \geq 6$
$x+3 y \leq 6$
(v)
$5 x+7 y \leq 35$
$\mathbf{y} \geq 0$
$-x+3 y \leq 3$
(vi) $\quad 5 x+7 y \leq 35$
$x-2 y \leq 2$
$\mathbf{x} \geq \mathbf{0}$

Solution:

(i) $2 x-3 y \leq 6$
$2 x+3 y \leq 12$
$\mathrm{x} \geq 0$
The associated equations are
$2 x-3 y=6$

$$
\begin{equation*}
2 x+3 y=12 \tag{2}
\end{equation*}
$$

x-intercept

$$
\text { Put } \begin{aligned}
& \mathrm{y}=0 \text { in eq. (1) } \\
& 2 \mathrm{x}-3(0)=6 \\
& 2 \mathrm{x}=6 \\
& \mathrm{x} \quad=\frac{6}{2}=3
\end{aligned}
$$

$\therefore \quad$ Point is $(3,0)$
y-intercept

$$
\begin{aligned}
\text { Put } x= & 0 \text { in eq. }(1) \\
2(0)-3 y & =6 \\
-3 y & =6 \\
y & =\frac{6}{-3}=-2
\end{aligned}
$$

$\therefore \quad$ Point is $(0,-2)$
x-intercept

$$
\begin{aligned}
\text { Put } \quad \mathrm{y} & =0 \text { in eq. (2) } \\
2 \mathrm{x}+3(0) & =12 \\
\mathrm{x} & =12 \\
\mathrm{x} & =\frac{12}{2}=6
\end{aligned}
$$

$\therefore \quad$ Point is $(6,0)$
y-intercept
Put $x=0$ in eq. (2)

$$
2(0)+3 y=12
$$

$$
3 y=12
$$

$$
\mathrm{y}=\frac{12}{3}=4
$$

$\therefore \quad$ Point is $(0,4)$

Test Point

$$
\begin{array}{ll}
\text { Put } \quad(0,0) \text { in } \\
2 \mathrm{x}-3 \mathrm{y} & <6 \\
2(0)-3(0) & <6
\end{array}
$$

$0<6$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}-3 \mathrm{y} \leq 6$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}+3 \mathrm{y}<12$
$2(0)+3(0)<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+3 \mathrm{y} \leq 12$ will be towards the origin side.

To find the intersection of both the lines solving eq. (1) \& eq. (2)
Adding eq. (1) and eq. (2)
$2 x-3 y=6$
$\underline{2 x+3 y=12}$
$4 \mathrm{x}=18$
$\mathrm{x}=\frac{18}{4}=\frac{9}{2}$

Put $\mathrm{x}=\frac{9}{2}$ in eq. (1)

$$
\begin{aligned}
& 2\left(\frac{9}{2}\right)-3 y=6 \\
& 9-3 y=6 \\
& y \quad=\frac{8}{3}=1 \\
\therefore \quad & \operatorname{Point}\left(\frac{9}{2}, 1\right)
\end{aligned}
$$

So the corner points are $(0,-2),\left(\frac{9}{2}, 1\right)(0,4)$
(ii) $\mathbf{x}+\mathrm{y} \leq 5$
$-2 x+y \leq 2$
$\mathbf{y} \geq 0$
The associated equations are

$$
\begin{align*}
& x+y=5 \tag{1}\\
& y-2 x=2 \tag{2}
\end{align*}
$$

x-intercept

$$
\text { Put } \begin{aligned}
\mathrm{y}=0 & \text { in eq. }(1) \\
\mathrm{x}+0 & =5 \\
\mathrm{x} & =5
\end{aligned}
$$

$$
\therefore \quad \text { Point is }(5,0)
$$

y -intercept

$$
\text { Put } \quad \begin{aligned}
\mathrm{x}=0 & \text { in eq. (1) } \\
0+\mathrm{y} & =5 \\
\mathrm{y} & =5
\end{aligned}
$$

$\therefore \quad$ Point is $(0,5)$
x-intercept

$$
\begin{aligned}
\text { Put } \mathrm{y} & =0 \text { in eq. (2) } \\
0-2 \mathrm{x} & =2 \\
\mathrm{x} & =\frac{2}{-2}=-1
\end{aligned}
$$

$\therefore \quad$ Point is $(-1,0)$
y-intercept

$$
\begin{aligned}
\text { Put } \mathrm{x} & =0 \text { in eq. (2) } \\
\mathrm{y}-2(0) & =2 \\
\mathrm{y} & =2
\end{aligned}
$$

$\therefore \quad$ Point is $(0,2)$
Test Point
Put $(0,0)$ in
$\mathrm{x}+\mathrm{y}<5$
$0+0<5$
$0<5$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+\mathrm{y} \leq 5$ will towards the origin side.
Put $(0,0)$ in
$\mathrm{y}-2 \mathrm{x}<2$
$0-2(0)<2$
$0<2$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{y}+2 \mathrm{x} \leq 2$ will towards the origin side.

To find the intersection of both the lines solving eq. (1) \& eq. (2).
Equation (1) - Eq. (2), we get

$$
\begin{aligned}
\mathrm{x}+\mathrm{y} & =5 \\
-2 \mathrm{x} \pm \mathrm{y} & =-2 \\
\hline 3 \mathrm{x} & =3 \\
\mathrm{x}=\frac{3}{3} & =1
\end{aligned}
$$

Put $\mathrm{x}=1$ in eq. (1)

$$
\begin{aligned}
1+y & =5 \\
y & =5-1=4
\end{aligned}
$$

$\therefore \quad$ Point $(1,4)$
So the corner points are $(-1,0),(5,0),(1,4)$
(iii) $3 x+7 y \leq 21$
$2 \mathrm{x}-\mathrm{y} \leq-3$
$\mathrm{y} \geq 0$
The associated equations are

$$
\begin{equation*}
3 x+7 y=21 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
2 x-y=-3 \tag{2}
\end{equation*}
$$

x-intercept

$$
\begin{aligned}
& \text { Put } \mathrm{y}=0 \text { in eq. }(1) \\
& 3 \mathrm{x}+7(0)=21 \\
& 3 \mathrm{x}=21 \\
& \mathrm{x}=\frac{21}{3}=7 \\
& \therefore \quad \text { Point is }(7,0) \\
& \mathrm{y} \text {-intercept } \\
& \mathrm{Put} \quad \mathrm{x}=0 \text { in eq. (1) } \\
& 3(0)+7 \mathrm{y}=21 \\
& 7 \mathrm{y}=21 \\
& \mathrm{y}=\frac{21}{7}=3
\end{aligned}
$$

y -intercept
$\therefore \quad$ Point is $(0,3)$
x-intercept

$$
\begin{aligned}
& \text { Put } \quad y=0 \text { in eq. (2) } \\
& 2 x-0=-3 \\
& x \quad=\frac{-3}{2} \\
& \therefore \text { Point is }\left(\frac{-3}{2}, 0\right)
\end{aligned}
$$

y -intercept

$$
\begin{aligned}
& \text { Put } \mathrm{x}=0 \text { in eq. (2) } \\
& 2(0)-\mathrm{y}=-3 \\
& -\mathrm{y}=-3
\end{aligned}
$$

$\mathrm{y}=3$
$\therefore \quad$ Point is $(0,3)$
Test Point

```
Put (0,0) in
3x + 7y < 21
3(0)+7(0) < 21
0<21
```

Which is true.
$\therefore \quad$ Graph of an inequality $3 \mathrm{x}+7 \mathrm{y} \leq 21$ will not be towards the origin side.

$$
\begin{aligned}
& \text { Put } \quad(0,0) \text { in } \\
& 2 x-y<-3 \\
& 2(0)-0<-3 \\
& 0<-3
\end{aligned}
$$

Which is false.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}-\mathrm{y} \leq-3$ will not be towards the origin side.

So the corner points are $\left(\frac{-3}{2}, 0\right)(0,3)$
(iv) $3 x+2 y \geq 6$
$x+3 y \leq 6$
$\mathbf{y} \geq 0$
The associated equations are

$$
\begin{align*}
& 3 x+2 y=6 \tag{1}\\
& x+3 y=6 \tag{2}
\end{align*}
$$

x-intercept

$$
\begin{aligned}
\text { Put } y & =0 \text { in eq. (1) } \\
3 \mathrm{x}+2(0) & =6 \\
3 \mathrm{x} & =6 \\
\mathrm{x} & =\frac{6}{3}=2
\end{aligned}
$$

$\therefore \quad$ Point is $(2,0)$
y -intercept

$$
\begin{aligned}
\text { Put } x & =0 \text { in eq. (1) } \\
3(0)+2 y & =6 \\
y & =\frac{6}{2}=3
\end{aligned}
$$

$\therefore \quad$ Point is $(0,3)$
x-intercept
Put $y=0$ in eq. (2)
$x+3(0)=6$
$x=6$
\therefore Point is $(6,0)$
y -intercept
Put $x=0$ in eq. (2)
$0+3 y=6$
$y=\frac{6}{3}$
$\mathrm{y}=2$
$\therefore \quad$ Point is $(0,2)$

Test Point

Put $(0,0)$ in
$3 \mathrm{x}+2 \mathrm{y}>6$
$3(0)+2(0)>6$
$0<6$
Which is false.
$\therefore \quad$ Graph of an inequality $3 \mathrm{x}+2 \mathrm{y} \geq 6$ will not be towards the origin side.
Put $(0,0)$ in
$x+3 y<6$
$0-3(0)<6$
$0<6$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+3 \mathrm{y} \leq 6$ will be towards the origin side.

To find the intersection of both the equations solving eq. (1) \& eq. (2)
Eq. (1) - Eq. (2) $\times 3$, we get $=3 \mathrm{MCl} 1 \times 0 \mathrm{M}$

$$
\begin{aligned}
3 x+2 y & =6 \\
-3 x \pm 9 y & =-18 \\
\hline-7 y & =-12 \\
y & =\frac{12}{7}
\end{aligned}
$$

Put $y=\frac{12}{7}$ in eq. (2)

$$
\begin{aligned}
x+3\left(\frac{12}{7}\right) & =6 \\
x+\frac{36}{7} & =6 \\
x & =6-\frac{36}{7}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{42-36}{7} \\
&=\frac{6}{7} \\
& \therefore \quad \operatorname{Point}\left(\frac{6}{7}, \frac{12}{7}\right)
\end{aligned}
$$

So the corner points are $(2,0),(6,0),\left(\frac{6}{7}, \frac{12}{7}\right)$
（v） $5 x+7 y \leq 35$

$$
-x+3 y \leq 3
$$

$$
\mathbf{x} \geq \mathbf{0}
$$

The associated equations are

$$
\begin{align*}
5 x+7 y & =35 \tag{1}\\
-x+3 y & =3 \tag{2}
\end{align*}
$$

\underline{x}－intercept

$$
\begin{aligned}
5 \mathrm{x}+7(0) & =35 \\
5 \mathrm{x} & =35 \\
\mathrm{x} & =\frac{35}{5}=7
\end{aligned}
$$

$\therefore \quad$ Point is $(7,0)$
y －intercept

$$
\begin{aligned}
\text { Put } x & =0 \text { in eq. (1) } \\
5(0)+7 y & =35 \\
y & =\frac{35}{7}=5
\end{aligned}
$$

$\therefore \quad$ Point is $(0,5)$
x－intercept

$$
\begin{aligned}
& \text { Put } y=0 \text { in eq. (2) } \\
& -x+3(0)=3 \\
& -x=3 \\
& x=-3
\end{aligned}
$$

\therefore Point is $(-3,0)$
y－intercept

$$
\begin{aligned}
& \text { Put }=0 \text { in eq. (2) } \\
& -0+3 y=3
\end{aligned}
$$

$$
y=\frac{3}{3}=1
$$

$\therefore \quad$ Point is $(0,1)$
Test Point
Put $(0,0)$ in
$5 \mathrm{x}+7 \mathrm{y}<35$
$5(0)+7(0)<35$
$0<35$
Which is true.
$\therefore \quad$ Graph of an inequality $5 x+7 y \leq 35$ will be towards the origin side.
Put $(0,0)$ in
$-x+3 y<3$
$-0+3(0)<3$
$0<3$
Which is true.
$\therefore \quad$ Graph of an inequality $-x+3 y \leq 6$ will be towards the origin side.

To find the intersection of both the equations solving eq. (1) \& eq. (2)
Eq. (1) - Eq. (2) $\times 5$, we get

$$
\begin{aligned}
5 x+7 y & =35 \\
-5 x+15 y & =15 \\
\hline 22 y & =50 \\
y & =\frac{50}{22}=\frac{25}{11}
\end{aligned}
$$

Put $y=\frac{25}{11}$ in eq. (2)

$$
-x+3\left(\frac{25}{11}\right)=3
$$

$$
\frac{75}{11}-3=x
$$

$$
x=\frac{42}{11}
$$

$\therefore \quad \operatorname{Point}\left(\frac{42}{11}, \frac{25}{11}\right)$
So the corner points are $(0,1),\left(\frac{42}{11}, \frac{25}{11}\right)$
(vi) $5 x+7 y \leq 35$

$$
\begin{aligned}
& x-2 y \leq 2 \\
& x \geq 0
\end{aligned}
$$

The associated equations are

$$
\begin{equation*}
5 x+7 y=35 \tag{1}
\end{equation*}
$$

$$
x-2 y=2
$$

x-intercept

$$
\begin{aligned}
\text { Put } y & =0 \text { in eq. }(1) \\
5 x+7(0) & =35 \\
x & =\frac{35}{5}=7
\end{aligned}
$$

$\therefore \quad$ Point is $(7,0)$
y-intercept

$$
\begin{aligned}
\text { Put } x & =0 \text { in eq. (1) } \\
5(0)+7 y & =35 \\
x & =\frac{35}{7}=5
\end{aligned}
$$

$\therefore \quad$ Point is $(0,5)$
x-intercept

$$
\begin{aligned}
\text { Put } y & =0 \text { in eq. (2) } \\
x-2(0) & =2 \\
x & =2
\end{aligned}
$$

$\therefore \quad$ Point is $(2,0)$
y-intercept

$$
\begin{aligned}
\text { Put } \mathrm{x} & =0 \text { in eq. (2) } \\
0-2 \mathrm{y} & =2 \\
\mathrm{y} & =\frac{2}{-2}=-1
\end{aligned}
$$

$\therefore \quad$ Point is $(0,-1)$

Test Point

Put $(0,0)$ in
$5 \mathrm{x}+7 \mathrm{y}<35$
$5(0)+7(0)<35$
$0<35$
Which is true.

\therefore Graph of an inequality $5 \mathrm{x}+7 \mathrm{y} \leq 35$ will be towards the origin side.
Put $(0,0)$ in
$x-2 y<2$
$0-2(0)<2$
$0<2$
Which is true.
\therefore Graph of an inequality $\mathrm{x}-2 \mathrm{y} \leq 4$ will be towards the origin side.

To find the intersection of both is the equations solving eq. (1) \& eq. (2)

$$
\begin{aligned}
& \text { Eq. }(1)-\text { Eq. }(2) \times 5 \text {, we get } \\
& 5 x+7 y=35 \\
& -5 x \mp 10 y=-10 \\
& 17 y=25 \\
& y=\frac{25}{17} \\
& \text { Put } y=\frac{25}{17} \text { in eq. (2), we get } \\
& x-2\left(\frac{25}{17}\right)=2 \\
& x-\frac{50}{17}=2 \\
& x=2+\frac{50}{17} \\
& x=\frac{34+50}{17} \\
& x=\frac{84}{17} \\
& \therefore \text { Point }\left(\frac{84}{17}, \frac{25}{17}\right)
\end{aligned}
$$

So the corner points are $\left(\frac{84}{17}, \frac{25}{17}\right)=(0,5),(0,-2)$
Q.5: Graph the solution region of the following system of linear inequalities by shading.
(i) $3 x-4 y \leq 12$
(ii) $3 x-4 y \leq 12$
$3 x+2 y \geq 3$
$x+2 y \leq 6$
$x+2 y \leq 9$
$x+y \geq 1$
(iii) $2 x+y \leq 4$
(iv) $2 x+y \leq 10$
$2 x-3 y \geq 12$
$x+y \leq 7$
$x+2 y \leq 6$
$-2 x+y \leq 4$
(v) $2 x+3 y \leq 18$
(vi) $3 x-2 y \geq 3$
$2 \mathrm{x}+\mathrm{y} \leq 10$
$x+4 y \leq 12$
$-2 \mathrm{x}+\mathrm{y} \leq 2$
$3 \mathrm{x}+\mathrm{y} \leq 12$

Solution:

(i) $3 x-4 y \leq 12$
$3 x+2 y \geq 3$
$\mathrm{x}+2 \mathrm{y} \leq 9$
The associated equations are

$$
\begin{align*}
& 3 x-4 y=12 \tag{1}\\
& 3 x+2 y=3 \tag{2}\\
& x+2 y=9 \tag{3}
\end{align*}
$$

x-intercept
Put $y=0$ in eqs. (1), (2) and (3)
$3 x-4(0)=12$
$3 \mathrm{x}=12$
$x=\frac{12}{3}=4$
\therefore Point is $(4,0)$

$$
\begin{aligned}
& 3 x+2(0)=3 \\
& 3 x=3 \\
& x=\frac{3}{3}=1
\end{aligned}
$$

\therefore Point is $(1,0)$

$$
\begin{aligned}
& \mathrm{x}+2(0)=9 \\
& \mathrm{x}=9 \\
& \therefore \text { Point is }(9,0)
\end{aligned}
$$

y -intercept
Put $x=0$ in eqs. (1), (2) and (3)
$3(0)-4 y=12$
$y=\frac{12}{-4}=-3$
\therefore Point is $(0,-3)$

$$
\begin{array}{l|l}
3(0)+2 y=3 \\
y=\frac{3}{2} & y+2 y=9 \\
y=\frac{9}{2}
\end{array}
$$

\therefore Point is $\left(0, \frac{9}{2}\right)$

Test Point

Put $(0,0)$ in
$3 x-4 y<12$
$3(0)-4(0)<12$
$0<12$
Which is true.
\therefore Graph of an inequality $3 x-4 y \leq 12$ will be towards the origin side.
Put $(0,0)$ in
$3 \mathrm{x}+2 \mathrm{y}>3$
$3(0)+2(0)>3$
$0>3$
which is false.
\therefore Graph of an inequality $3 x+2 y \geq 3$ will not be towards the origin side.
Put $(0,0)$ in
$x+2 y<9$
$0+2(0)<9$
$0<9$
Which is true.
\therefore Graph of an inequality $\mathrm{x}+2 \mathrm{y} \leq 9$ will be towards the origin side.

(ii) $3 x-4 y \leq 12$
$x+2 y \leq 6$
$x+y \geq 1$
The associated equations are
$3 x-4 y=12 \quad \ldots .$. (1)
$x+2 y=6 \quad$.... (2)
$x+y=1$
\underline{x}-intercept
Put $\mathrm{y}=0$ in equations (1), (2) and (3)

$$
\begin{aligned}
& 3 x-4(0)=12 \\
& 3 x=12
\end{aligned}
$$

$$
\begin{aligned}
& x+2(0)=6 \\
& x=6
\end{aligned}
$$

$$
\begin{aligned}
& x+0=1 \\
& x=1
\end{aligned}
$$

$\mathrm{x}=\frac{12}{3}=4$
\therefore Point is $(4,0)$
y-intercept
Put $\mathrm{x}=0$ in equations (1), (2) and (3)
$3(0)-4 y=12$
$y=\frac{12}{-4}=-3$
\therefore Point is $(0,-3)$

$$
\begin{aligned}
& 0+2 y=6 \\
& y=\frac{6}{2}=3
\end{aligned}
$$

\therefore Point is $(0,3)$

$$
\begin{aligned}
& 0+\mathrm{y}=1 \\
& \mathrm{y}=1 \\
& \therefore \text { Point is }(0,1)
\end{aligned}
$$

Test Point

Put $(0,0)$ in
$3 x-4 y<12$
$3(0)-4(0)<12$
$0<12$
Which is true.
\therefore Graph of an inequality $3 x-4 y \leq 12$ will be towards the origin side.
Put $(0,0)$ in
$x+2 y<6$
$0+2(0)<6$
TALEAMCITY.CDV
$0<6$
Which is true.
\therefore Graph of an inequality $\mathrm{x}+2 \mathrm{y} \leq 6$ will not be towards the origin side.
Put $(0,0)$ in
$x+y>1$
$0+0>1$
$0>1$
Which is false.
\therefore Graph of an inequality $\mathrm{x}+\mathrm{y} \geq 1$ will not be towards the origin side.

(iii) $2 \mathrm{x}+\mathrm{y} \leq 4$
$2 x-3 y \geq 12$
$x+2 y \leq 6$
The associated equations are

$$
\begin{align*}
& 2 x+y=4 \tag{1}\\
& 2 x-3 y=12 \tag{2}\\
& x+2 y=6 \tag{3}
\end{align*}
$$

x-intercept
Put $\mathrm{y}=0$ in equations $(1),(2)$ and (3)
$2 \mathrm{x}+0=4$
$\mathrm{x}=\frac{4}{2}=2$
\therefore Point is $(2,0)$
$2 x-3(0)=12$
$2 \mathrm{x}=12$
$\mathrm{x}=\frac{12}{2}=6$
\therefore Point is $(6,0)$

$$
\begin{aligned}
& \mathrm{x}+2(0)=6 \\
& \mathrm{x}=6 \\
& \therefore \text { Point is }(6,0)
\end{aligned}
$$

y -intercept

$$
\text { Put } x=0 \text { in equations (1), (2) and (3) }
$$

$2(0)+y=4$

$$
y=4
$$

\therefore Point is $(0,4)$
$2(0)-3 y=12$
$y=\frac{12}{-3}=-4$
\therefore Point is $(0,-4)$
$0+2 y=6$
$y=\frac{6}{2}=3$
\therefore Point is $(0,3)$

Test Point

Put $(0,0)$ in
$2 \mathrm{x}+\mathrm{y}<4$
$2(0)+0<4$
$0<4$
Which is true.
\therefore Graph of an inequality $2 \mathrm{x}+\mathrm{y} \leq 4$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}-3 \mathrm{y}>12$
$2(0)-3(0)>12$
$0>12$
Which is false.
\therefore Graph of an inequality $2 x-3 y \geq 12$ will not be towards the origin side.
Put $(0,0)$ in
$x+2 y<6$
$0+2(0)<6$
$0<6$
Which is true.
\therefore Graph of an inequality $\mathrm{x}+2 \mathrm{y} \leq 6$ will be towards the origin side.


```
(iv) \(2 x+y \leq 10\)
\[
\mathbf{x}+\mathbf{y} \leq 7
\]
```


$-2 \mathrm{x}+\mathrm{y} \leq 4$

The associated equations are

$$
\begin{align*}
2 x+y & =10 \tag{1}\\
x+y & =7 \tag{2}\\
-2 x+y & =4 \tag{3}
\end{align*}
$$

\underline{x}-intercept
Put $y=0$ in equations (1), (2) and (3)
$2 x+0=10$
$\mathrm{x}=\frac{10}{2}=5$
\therefore Point is $(5,0)$

$$
\begin{aligned}
& x+0=7 \\
& x=7
\end{aligned}
$$

\therefore Point is $(7,0)$
$-2 \mathrm{x}+0=4$
$x=\frac{4}{-2}=-2$
\therefore Point is $(-2,0)$
y -intercept
Put $x=0$ in equations (1), (2) and (3)
$2(0)+y=10$
$y=10$
\therefore Point is $(0,10)$

Test Point

Put $(0,0)$ in
$2 \mathrm{x}+\mathrm{y}<10$
$2(0)+0<10$
$0<10$
Which is true.
\therefore Graph of an inequality $2 \mathrm{x}+\mathrm{y} \leq 10$ will be towards the origin side.
Put $(0,0)$ in
$x+y<7$
$0+0<7$
$0<7$
Which is true.
\therefore Graph of an inequality $\mathrm{x}+\mathrm{y} \leq 7$ will be towards the origin side.
Put $(0,0)$ in
$-2 \mathrm{x}+\mathrm{y}<4$
$-2(0)+0<4$
$0<4$
Which is true.
\therefore Graph of an inequality $-2 \mathrm{x}+\mathrm{y} \leq 4$ will be towards the origin side.
(v) $2 x+3 y \leq 18$
$2 \mathrm{x}+\mathrm{y} \leq 10$
$-2 \mathrm{x}+\mathrm{y} \leq 2$
The associated equations are

$$
\begin{array}{ll}
2 x+3 y=18 & \ldots .(1) \\
2 x+y=10 & \ldots .(2) \\
-2 x+y=2 & \ldots .(3) \tag{3}
\end{array}
$$

x-intercept

\therefore Point is $(-1,0)$
y-intercept
Put $x=0$ in equations (1), (2) and (3)
$2(0)+3 y=18$
$3 y=18$
$y=\frac{18}{3}=6$
\therefore Point is $(0,6)$

$$
2(0)+y=10
$$ $y=10$

\therefore Point is $(0,10)$
$-2(0)+y=2$ $y=2$
\therefore Point is $(0,2)$

Test Point

Put $(0,0)$ in
$2 \mathrm{x}+3 \mathrm{y}<18$
$2(0)+3(0)<18$
$0<18$
Which is true.
\therefore Graph of an inequality $2 \mathrm{x}+3 \mathrm{y} \leq 18$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}+\mathrm{y}<10$
$2(0)+0<10$
$0<10$
Which is true.
\therefore Graph of an inequality $2 \mathrm{x}+\mathrm{y} \leq 10$ will be towards the origin side.
Put $(0,0)$ in
$-2 \mathrm{x}+\mathrm{y}<2$
$-2(0)+0<2$
$0<2$

Which is true.
\therefore Graph of an inequality $-2 \mathrm{x}+\mathrm{y} \leq 2$ will be towards the origin side.

$$
\begin{array}{ll}
\text { (vi) } & 3 x-2 y \geq 3 \\
& x+4 y \leq 12 \\
& 3 x+y \leq 12
\end{array}
$$

The associated equations are

$$
\begin{align*}
& 3 x-2 y=3 \\
& x+4 y=12 \quad \ldots(1) \tag{2}\\
& 3 x+y=12 \tag{3}
\end{align*}
$$

x-intercept
Put $y=0$ in equations (1), (2) and (3)

$$
\begin{aligned}
3 \mathrm{x}-2(0) & =3 \\
3 \mathrm{x} & =3 \\
\mathrm{x} & =\frac{3}{3}=1
\end{aligned}
$$

$x+4(0)=12$

$$
x=12
$$

\therefore Point is $(12,0)$
\therefore Point is $(1,0)$
y -intercept
Put $\mathrm{x}=0$ in equations (1), (2) and (3)
$3(0)-2 y=3$
$y=\frac{3}{-2}$
$0+4 \mathrm{y}=12$
$y=\frac{12}{4}=3$
\therefore Point is $(0,3)$

$$
\begin{aligned}
3 \mathrm{x}+0 & =12 \\
\mathrm{x} & =\frac{12}{3}=4
\end{aligned}
$$

\therefore Point is $(4,0)$

$$
\begin{aligned}
3(0)+y & =12 \\
y & =12
\end{aligned}
$$

\therefore Point is $(0,12)$
\therefore Point is $\left(0, \frac{-3}{2}\right)$

Test Point

Put $(0,0)$ in
$3 x-2 y>3$
$3(0)-2(0)>3$
$0>3$
Which is false.
\therefore Graph of an inequality $3 \mathrm{x}-2 \mathrm{y} \geq 3$ will not be towards the origin side.
Put $(0,0)$ in
$x+4 y<12$
$0+4(0)<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+4 \mathrm{y} \leq 12$ will be towards the origin side.
Put $(0,0)$ in
$3 \mathrm{x}+\mathrm{y}<12$
$3(0)+0<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $3 \mathrm{x}+\mathrm{y} \leq 12$ will be towards the origin side.

EXERCISE 5.2

Q.4: Graph the feasible region of the following system of linear inequalities and find the corner points in each case.
(i) $\quad 2 x-3 y \leq 6$
$2 x+3 y \leq 12$

$$
\mathbf{x} \geq 0, y \geq 0
$$

(iv) $3 x+7 y \leq 21$
$\mathbf{x}-\mathbf{y} \leq 3$
$\mathbf{x} \geq 0, \mathrm{y} \geq 0$
(ii) $\quad \mathrm{x}+\mathrm{y} \leq 5$
$-2 x+y \leq 2$
$\mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq 0$
(v) $3 x+2 y \geq 6$
$x+y \leq 4$
(vi) $\quad 5 x+7 y \leq 35$
$\mathbf{x} \geq 0, y \geq 0$
(iii) $\mathrm{x}+\mathrm{y} \leq 5$ $-2 x+y \geq 2$
$\mathbf{x} \geq \mathbf{0}, \mathbf{y} \geq 0$

