$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+4 \mathrm{y} \leq 12$ will be towards the origin side.
Put $(0,0)$ in
$3 \mathrm{x}+\mathrm{y}<12$
$3(0)+0<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $3 \mathrm{x}+\mathrm{y} \leq 12$ will be towards the origin side.

EXERCISE 5.2

Q.4: Graph the feasible region of the following system of linear inequalities and find the corner points in each case.
(i) $\quad 2 x-3 y \leq 6$
$2 x+3 y \leq 12$

$$
\mathbf{x} \geq 0, y \geq 0
$$

(iv) $3 x+7 y \leq 21$
$\mathbf{x}-\mathbf{y} \leq 3$
$\mathbf{x} \geq 0, \mathrm{y} \geq 0$
(ii) $\quad x+y \leq 5$
$-2 x+y \leq 2$
$\mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq 0$
(v) $\quad 3 x+2 y \geq 6$
$x+y \leq 4$
(vi) $\quad 5 x+7 y \leq 35$
$\mathbf{x} \geq 0, y \geq 0$

$$
x \geq 0, y \geq 0
$$

Solution:

(i) $2 \mathrm{x}-3 \mathrm{y} \leq 6 \quad$ (Lhr. Board 2005)
$2 x+3 y \leq 12$
$\mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}$
The associated equations are

$$
\begin{align*}
2 x-3 y & =6 \tag{1}\\
2 x+3 y & =12 \tag{2}
\end{align*}
$$

x-intercept

$$
\begin{array}{ll}
\text { Put } & \mathrm{y}=0 \text { in eq. (1) } \\
2 \mathrm{x}-3(0)=6 \\
2 \mathrm{x}=6 \\
\mathrm{x} \quad=\frac{6}{2}=3
\end{array}
$$

$\therefore \quad$ Point is $(3,0)$
y-intercept

$$
\begin{aligned}
\text { Put } \mathrm{x}= & 0 \text { in eq. (1) } \\
2(0)-3 \mathrm{y} & =6 \\
-3 \mathrm{y} & =6 \\
y & =\frac{6}{-3}--2=3
\end{aligned}
$$

$\therefore \quad$ Point is $(0,-2)$
x-intercept

$$
\begin{aligned}
\text { Put } y & =0 \text { in eq. (2) } \\
2 \mathrm{x}+3(0) & =12 \\
\mathrm{x} & =12 \\
\mathrm{x} & =\frac{12}{2}=6
\end{aligned}
$$

$\therefore \quad$ Point is $(6,0)$
y -intercept
Put $x=0$ in eq. (2)
$2(0)+3 y=12$
$3 y=12$

$$
y=\frac{12}{3}=4
$$

$\therefore \quad$ Point is $(0,4)$
Test Point

$$
\begin{array}{ll}
\text { Put } \quad(0,0) \text { in } \\
2 x-3 y & <6 \\
2(0)-3(0) & <6 \\
0<6 &
\end{array}
$$

Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}-3 \mathrm{y} \leq 6$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}+3 \mathrm{y}<12$
$2(0)+3(0)<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+3 \mathrm{y} \leq 12$ will be towards the origin side.

$\therefore \mathrm{OABC}$ is the feasible solution region so corner points are
$\mathrm{O}(0,0), \quad \mathrm{A}(3,0), \quad \mathrm{C}(0,4)$
To find B solving eq. (1) \& eq. (2)
Adding eq. (1) \& eq. (2)
$2 x-3 y=6$
$\underline{2 x+3 y=12}$
$4 \mathrm{x}=18$
$\mathrm{x}=\frac{18}{4}=\frac{9}{2}$
Put

$$
\begin{aligned}
& \mathrm{x} \quad=\frac{9}{2} \text { in eq. (1) } \\
& 2\left(\frac{9}{2}\right)-3 \mathrm{y}=6 \\
& 9-6=3 \mathrm{y} \\
& \mathrm{y}=\frac{3}{3}=1 \\
& \therefore \mathrm{~B}\left(\frac{9}{2}, 1\right)
\end{aligned}
$$

(ii) $\mathrm{x}+\mathrm{y} \leq 5$

$$
-2 x+y \leq 2
$$

$$
x \geq 0, y \geq 0
$$

The associated equations are
x-intercept
$\therefore \quad$ Point is $(5,0)$
y-intercept

$$
\text { Put } \quad \begin{aligned}
\mathrm{x}= & 0 \text { in eq. (1) } \\
0+\mathrm{y} & =5 \\
\mathrm{y} & =5
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{x}+\mathrm{y}=5 \tag{1}\\
& y-2 x=2 \tag{2}\\
& \text { Put } y=0 \text { in eq. (1) } \\
& x+0=5 \\
& \mathrm{x}=5
\end{align*}
$$

$\therefore \quad$ Point is $(0,5)$
x-intercept
Put $y=0$ in eq. (2)
$0-2 \mathrm{x}=2$
$x=\frac{2}{-2}=-1$
$\therefore \quad$ Point is $(-1,0)$
y -intercept
Put $x=0$ in eq. (2)
$y-2(0)=2$
$y=2$
$\therefore \quad$ Point is $(0,2)$
Test Point
Put $(0,0)$ in
$\mathrm{x}+\mathrm{y}<5$
$0+0<5$
$0<5$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+\mathrm{y} \leq 5$ will towards the origin side.
Put $(0,0)$ in
$\mathrm{y}-2 \mathrm{x}<2$
$0-2(0)<2$
$0<2$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{y}-2 \mathrm{x} \leq 2$ will towards the origin side.

\therefore OABC is the feasible solution region so corner points are
$\mathrm{O}(0,0), \quad \mathrm{A}(5,0), \quad \mathrm{C}(0,2)$
To find B solving eq. (1) \& eq. (2)
Eq. (1) - Eq. (2) we get

$$
x+y=5
$$

$$
\Phi^{2 \mathrm{x}} \pm \mathrm{y}=-2
$$

$$
3 x=3
$$

$$
x=\frac{3}{3}=1
$$

Put
$\mathrm{x}=1$ in eq. (1)
$1+y=5$
$y=5-1=4$
$\therefore \mathrm{B}(1,4)$
(iii) $\mathrm{x}+\mathrm{y} \leq 5$
$-2 x+y \geq 2$
$\mathbf{x} \geq \mathbf{0}, \mathbf{y} \geq \mathbf{0}$
The associated equations are
$\mathrm{x}+\mathrm{y}=5$
$-2 x+y=2$
(2) $1=3 \mathrm{MCH} 7.00 \mathrm{M}$
\underline{x}-intercept
Put $\mathrm{y}=0$ in eq. (1)
$x+0=5$
$\mathrm{x}=5$
$\therefore \quad$ Point is $(5,0)$
y -intercept
Put $\mathrm{x}=0$ in eq. (1)
$0+\mathrm{y}=5$
$y=5$
$\therefore \quad$ Point is $(0,5)$
x-intercept
Put $\mathrm{y}=0$ in eq. (2)
$-2 \mathrm{x}+0=2$

$$
x=\frac{2}{-2}=-1
$$

$\therefore \quad$ Point is $(-1,0)$
y-intercept
Put $\mathrm{x}=0$ in eq. (2)
$-2(0)+y=2$

$$
y=2
$$

$\therefore \quad$ Point is $(0,2)$
Test Point
Put $(0,0)$ in
$\mathrm{x}+\mathrm{y}<5$
$0+0<5$
$0<5$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+\mathrm{y} \leq 5$ will be towards the origin side.
Put $(0,0)$ in
$-2 \mathrm{x}+\mathrm{y}>2$
$-2(0)+0>2$
$0>2$
Which is false.
$\therefore \quad$ Graph of an inequality $-2 \mathrm{x}+\mathrm{y} \geq 2$ will not be towards the origin side.

$\therefore \quad \mathrm{ABC}$ is the feasible solution region. So corner points are $\mathrm{A}(0,2), \mathrm{C}(0,5)$. To
find B solving eq. (1) \& eq. (2)
Eq. (1) - Eq. (2), we get
$x+y=5$
$\mp 2 x \pm y=2$
$3 \mathrm{x}=3$
$x=\frac{3}{3}=1$
Put $\mathrm{x}=1$ in eq. (1)
$1+y=5$
$\mathrm{y}=5-1=4$
$\therefore \quad \mathrm{B}(1,4)$
(iv) $3 x+7 y \leq 21$
$\mathbf{x}-\mathrm{y} \leq 3$
$\mathbf{x} \geq \mathbf{0}, \mathbf{y} \geq \mathbf{0}$
The associated equations are

$$
\begin{align*}
3 x+7 y & =21 \tag{1}\\
x-y & =3 \tag{2}
\end{align*}
$$

x-intercept

$3 x+7(0)=21$
$3 \mathrm{x}=21$

$$
x=\frac{21}{3}=7
$$

$\therefore \quad$ Point is $(7,0)$
y -intercept
Put $x=0$ in eq. (1)
$3(0)+7 y=21$

$$
y=\frac{21}{7}=3
$$

$\therefore \quad$ Point is $(0,3)$
x-intercept
Put $\quad y=0$ in eq. (2)

$$
\begin{aligned}
& x-0=3 \\
& x=3
\end{aligned}
$$

$\therefore \quad$ Point is $(3,0)$
y-intercept
Put $\mathrm{x}=0$ in eq. (2)
$0-y=3$
$y=-3$
$\therefore \quad$ Point is $(0,-3)$

Test Point

$$
\begin{array}{ll}
\text { Put } \quad(0,0) \text { in } \\
3 x+7 y & <21 \\
3(0)+7(0) & <21 \\
0<21 &
\end{array}
$$

Which is true.
$\therefore \quad$ Graph of an inequality $3 \mathrm{x}+7 \mathrm{y} \leq 21$ will be towards the origin side.
Put $(0,0)$ in
$x-y<3$
$0-0<3$
$0<3$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}-\mathrm{y} \leq 3$ will be towards the origin side.

$\therefore \quad \mathrm{OABC}$ is the feasible solution region so corner points are

$$
\mathrm{O}(0,0), \mathrm{A}(3,0), \mathrm{C}(0,3)
$$

To find B solving eq. (1) \& eq. (2)
Eq. (1) + Eq. (2) $\times 7, \quad$ we get

$$
3 x+7 y=21
$$

$$
7 x-7 y=21
$$

$$
10 \mathrm{x}=42
$$

$$
x=\frac{42}{10}=\frac{21}{5}
$$

Put $x=\frac{21}{5} \quad$ in eq. (2)

$$
\frac{21}{5}-y=3
$$

$$
\frac{21}{5}-3=y
$$

$$
y=\frac{21-15}{5}
$$

$$
y=\frac{6}{5}
$$

(v) $\quad 3 x+2 y \geq 6$
$x+y \leq 4$
$\mathbf{x} \geq \mathbf{0}, \mathbf{y} \geq \mathbf{0}$
The associated equations are

$$
\begin{align*}
& 3 x+2 y=6 \tag{1}\\
& x+y=4
\end{align*}
$$

x-intercept

$$
\begin{aligned}
\text { Put } y & =0 \text { in eq. (1) } \\
3 x+2(0) & =6 \\
x & =\frac{6}{3}=2
\end{aligned}
$$

$\therefore \quad$ Point is $(2,0)$
y -intercept

$$
\begin{aligned}
\text { Put } \quad \mathrm{x} & =0 \text { in eq. (1) } \\
3(0)+2 \mathrm{y} & =6 \\
y & =\frac{6}{2}=3
\end{aligned}
$$

$\therefore \quad$ Point is $(0,3)$
x-intercept

$$
\text { Put } \begin{aligned}
y & =0 \text { in eq. (2) } \\
x+0 & =4 \\
x & =4
\end{aligned}
$$

$\therefore \quad$ Point is $(4,0)$
y-intercept
Put $\quad \mathrm{x}=0$ in eq. (2)
$0+y=4$

$$
y=4
$$

Test Point

Put $(0,0)$ in
$3 \mathrm{x}+2 \mathrm{y}>6$
$3(0)+2(0)>6$
$0>6$
Which is false.
$\therefore \quad$ Graph of an inequality $3 \mathrm{x}+2 \mathrm{y} \geq 6$ will not be towards the origin side.
Put $(0,0)$ in
$x+y<4$
$0+0<4$

$$
0<4
$$

Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+\mathrm{y} \leq 4$ will be towards the origin side.

$\therefore \quad \mathrm{ABCD}$ is the feasible solution region so corner points are

$$
\mathrm{A}(2,0), \mathrm{B}(4,0), \mathrm{C}(0,4), \mathrm{D}(0,3)
$$

(vi) $5 x+7 y \leq 35$
$x-2 y \leq 4$
$\mathbf{x} \geq \mathbf{0}, \mathbf{y} \geq \mathbf{0}$
The associated equations are
$5 x+7 y=35$
$x-2 y=4$
x-intercept

$$
\begin{aligned}
\text { Put y } & =0 \text { in eq. (1) } \\
5 \mathrm{x}+7(0) & =35 \\
\mathrm{x} & =\frac{35}{5}=7
\end{aligned}
$$

$\therefore \quad$ Point is $(7,0)$
y-intercept

$$
\begin{aligned}
\text { Put } \quad x & =0 \text { in eq. (1) } \\
5(0)+7 y & =35 \\
y & =\frac{35}{7}=5
\end{aligned}
$$

$\therefore \quad$ Point is $(0,5)$
x-intercept

$$
\begin{aligned}
\text { Put } \mathrm{y} & =0 \text { in eq. (2) } \\
\mathrm{x}-2(0) & =4 \\
\mathrm{x} & =4
\end{aligned}
$$

$\therefore \quad$ Point is $(4,0)$
y -intercept
Put $\mathrm{x}=0$ in eq. (2)

$$
\begin{aligned}
0-2 y & =4 \\
y & =\frac{4}{-2}=-2
\end{aligned}
$$

$\therefore \quad$ Point is $(0,-2)$

Test Point

$$
\text { Put }(0,0) \text { in }
$$

$$
5 x+7 y<35
$$

$$
5(0)+7(0)<35
$$

$$
0<35
$$

Which is true.
$\therefore \quad$ Graph of an inequality $5 \mathrm{x}+7 \mathrm{y} \leq 35$ will be towards the origin side.
Put $(0,0)$ in
$x-2 y<4$
$0-2(0)<4$
$0<4$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}-2 \mathrm{y} \leq 4$ will be towards the origin.

$\therefore \quad \mathrm{OABC}$ is the feasible solution region so corner points are

$$
\mathrm{O}(0,0), \mathrm{A}(4,0), \mathrm{C}(0,5)
$$

To find B solving eq. (1) \& eq. (2)

$$
\begin{gathered}
\text { Eq. (1)- Eq. }(2) \times 5 \text {, we get } \\
5 \mathrm{x}+7 \mathrm{y}=35 \\
-\quad 5 \mathrm{x} \mp 10 \mathrm{y}=-20 \\
\hline 17 \mathrm{y}=15 \\
\mathrm{y}=\frac{15}{17}
\end{gathered}
$$

$$
5 x+7 y=35 W a m=5 M 017,000
$$

Put $y=\frac{15}{17}$ in eq. (2)
$x-2\left(\frac{15}{17}\right)=4$
$x-\frac{30}{17}=4$
$x=4+\frac{30}{17}$
$x=\frac{68+30}{17}$

$$
\begin{aligned}
\mathrm{x} & =\frac{98}{17} \\
\therefore \quad \mathrm{~B} & =\left(\frac{98}{17}, \frac{15}{17}\right)
\end{aligned}
$$

Q.2: Graph the feasible region of the following system of linear inequalities and find the corner points in each case.
$2 \mathrm{x}+\mathrm{y} \leq 10$
$x+4 y \leq 12$
(ii) $\quad 2 \mathrm{x}+3 \mathrm{y} \leq 18$
$2 x+y \leq 10$
$x+2 y \leq 10$
$x+4 y \leq 12$
$\mathrm{x} \geq 0, \mathrm{y} \geq 0$
$x \geq 0, y \geq 0$
(iii) $\quad 2 \mathrm{x}+3 \mathrm{y} \leq 18$
(iv) $\quad x+2 y \leq 14$
$x+4 y \leq 12$
$3 x+4 y \leq 36$
$3 x+y \leq 12$
$2 \mathrm{x}+\mathrm{y} \leq 10$
$\mathrm{x} \geq 0, \mathrm{y} \geq 0$
$x \geq 0, y \geq 0$
(v)
$x+3 y \leq 15$
$2 \mathrm{x}+\mathrm{y} \leq 12$
(vi) $2 x+y \leq 20$
$4 x+3 y \leq 24$
$8 x+15 y \leq 120$
$\mathrm{x} \geq 0, \mathrm{y} \geq 0$

Solution:

(i) $2 \mathrm{x}+\mathrm{y} \leq 10$
$x+4 y \leq 12$
$x+4 y \leq 12$
$x+2 y \leq 10$
$\mathbf{x} \geq 0, \mathrm{y} \geq 0$
The associated eqs. are

$$
\begin{aligned}
& 2 x+y=10 \\
& x+4 y=12 \\
& x+2 y=10
\end{aligned}
$$

rcept

$$
\text { Put } y=0 \text { in eqs. (1), (2) and (3) }
$$

$$
\begin{aligned}
2 \mathrm{x}+0 & =10 \\
2 \mathrm{x} & =10 \\
\mathrm{x} & =\frac{10}{2}=5
\end{aligned}
$$

\therefore Point is $(5,0)$

$$
\begin{aligned}
& \mathrm{x}+4(0)=12 \\
& \mathrm{x}=12 \\
& \therefore \text { Point is }(12,0)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}+2(0)=10 \\
& \mathrm{x}=10 \\
& \therefore \text { Point is }(10,0)
\end{aligned}
$$

y-intercept

$$
\text { Put } \quad x=0 \text { in eqs. (1), (2) and (3) }
$$

$$
\begin{aligned}
2(0)+y & =10 \\
y & =10
\end{aligned}
$$

$$
\begin{aligned}
0+4 y & =12 \\
4 y & =12
\end{aligned}
$$

$$
\begin{aligned}
0+2 \mathrm{y} & =10 \\
2 \mathrm{y} & =10
\end{aligned}
$$

\therefore Point is $(0,10)$

$$
\begin{array}{c|c}
\mathrm{y} \quad=\frac{12}{4}=3 & \mathrm{y} \quad=\frac{10}{2}=5 \\
\therefore \text { Point is }(0,3) & \therefore \text { Point is }(0,5)
\end{array}
$$

Test Point

Put $(0,0)$
$2 x+y<10$
$2(0)+0<10$
$0<10$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+\mathrm{y} \leq 10$ will be towards the origin side.
Put $(0,0)$ in
$x+4 y<12$
$0+4(0)<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+4 \mathrm{y} \leq 12$ will be towards the origin side.
Put $(0,0)$ in
$x+2 y<10$
$0+2(0)<10$
$0<10$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+2 \mathrm{y} \leq 10$ will be towards the origin side.

$\therefore \quad \mathrm{OABC}$ is the feasible solution region so the corner points are
$\mathrm{O}(0,0), \mathrm{A}(5,0), \mathrm{C}(0,3)$
To find B solving eq. (1) \& eq. (2)
Eq. (1) - Eq. (2) $\times 2$, we get
$2 \mathrm{x}+\mathrm{y}=10$
$-2 x \pm 8 y=-24$
$-7 y=-14$
$\mathrm{y}=\frac{14}{7}=2$
Put $y=2$ in eq. (2)
$\mathrm{x}+4(2)=12$
$x+8=12$
$\mathrm{x}=12-8=4$
$\therefore \quad B=(4,2)$
(ii) $2 \mathrm{x}+3 \mathrm{y} \leq 18$
(Guj. Board 2005) (Lhr. Board 2008)
$2 \mathrm{x}+\mathrm{y} \leq 10$
$x+4 y \leq 12$
TADEMCITY.COV
$\mathbf{x} \geq \mathbf{0} \quad, \quad \mathbf{y} \geq \mathbf{0}$
The associated equations are
$2 x+3 y=18$
10
$2 x+y=10$
$x+4 y=12$
\underline{x}-intercept
Put $y=0$ in eqs. (1), (2) and (3)
$2 \mathrm{x}+3(0)=18$
$2 \mathrm{x}=18$
$\mathrm{x}=\frac{18}{2}=9$
\therefore Point is $(9,0)$

$$
\begin{aligned}
2 \mathrm{x}+0 & =10 \\
2 \mathrm{x} & =10 \\
\mathrm{x} & =\frac{10}{2}=5
\end{aligned}
$$

\therefore Point is $(5,0)$
$x+4(0)=12$
$\mathrm{x}=12$
\therefore Point is $(12,0)$
y-intercept

$$
\begin{aligned}
& \text { Put } x=0 \text { in eqs. (1), (2) and (3) } \\
& 2(0)+3 y=18 \\
& 3 y=18 \\
& y=\frac{18}{3}=6 \\
& \begin{aligned}
2(0)+y & =10 \\
y & =10
\end{aligned} \\
& \therefore \text { Point is }(0,10)
\end{aligned}
$$

\therefore Point is $(0,6)$

$$
\begin{aligned}
0+4 y & =12 \\
4 y & =12 \\
y \quad & =\frac{12}{4}=3 \\
\therefore \text { Point is } & (0,3)
\end{aligned}
$$

Test Point

Put $(0,0)$
$2 \mathrm{x}+3 \mathrm{y}<18$
$2(0)+3(0)<18$
$0<18$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+3 \mathrm{y} \leq 18$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}+\mathrm{y}<10$
$2(0)+0<10$
$0<10$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+\mathrm{y} \leq 10$ will be towards the origin side.
Put $(0,0)$ in
$x+4 y<12$
$0+4(0)<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+4 \mathrm{y} \leq 12$ will be towards the origin side.

$\therefore \quad \mathrm{OABC}$ is the feasible solution region so the corner points are $\mathrm{O}(0,0), \mathrm{A}(5,0), \mathrm{C}(0,3)$
To find B solving eq. (2) \& eq. (3)
Eq. (2) - Eq. (3) $\times 2$, we get
$2 x+y=10$
$-2 x \pm 8 y=-24$
$-7 y=-14$
$\mathrm{y}=\frac{-14}{-7}=2 \square=1017.007$
Put $y=2$ in eq. (3)
$x+4(2)=12$
$\mathrm{x}+8=12$
$\mathrm{x}=12-8=4$
$\therefore \quad B=(4,2)$
(iii) $2 \mathrm{x}+3 \mathrm{y} \leq 18$
$x+4 y \leq 12$
$3 x+y \leq 12$
$\mathbf{x} \geq \mathbf{0}, \quad \mathrm{y} \geq 0$
The associated equations are
$2 x+3 y=18$
$x+4 y=12$
$3 \mathrm{x}+\mathrm{y}=12$
x-intercept

$$
\text { Put } y=0 \text { in eqs. (1), (2) and (3) }
$$

$2 \mathrm{x}+3(0)=18$
$2 \mathrm{x}=18$
$x=\frac{18}{2}=9$
\therefore Point is $(9,0)$
$x+4(0)=12$
$\mathrm{x}=12$
\therefore Point is $(12,0)$

$$
\begin{aligned}
& 3 x+0=12 \\
& 3 x=12 \\
& x=\frac{12}{3}=4 \\
& \therefore \text { Point is }(4,0)
\end{aligned}
$$

y-intercept
Put $x=0$ in eqs. (1), (2) and (3)
$2(0)+3 y=18$
$3 \mathrm{y}=18$
$x=\frac{18}{3}=6$
\therefore Point is $(0,6)$

$$
\begin{aligned}
0+4 y & =12 \\
y & =\frac{12}{4}=3
\end{aligned}
$$

\therefore Point is $(0,3)$

$$
\begin{aligned}
3(0)+y & =12 \\
y & =12
\end{aligned}
$$

\therefore Point is $(0,12)$

Test Point

Put $(0,0)$ in
$2 \mathrm{x}+3 \mathrm{y}<18$
$2(0)+3(0)<18$
$0<18$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+3 \mathrm{y} \leq 18$ will be towards the origin side.
Put $(0,0)$ in
$x+4 y<12$
TALEAMCITY.COY
$0+4(0)<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+4 \mathrm{y} \leq 12$ will be towards the origin side.
Put $(0,0)$ in
$3 \mathrm{x}+\mathrm{y}<12$
$3(0)+0<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $3 \mathrm{x}+\mathrm{y} \leq 12$ will be towards the origin side.

$\therefore \quad \mathrm{OABC}$ is the feasible solution region so the corner points are

$$
\mathrm{O}(0,0), \mathrm{A}(4,0), \mathrm{C}(0,3)
$$

To find B solving eq. (2) \& eq. (3)
Eq. (2) $\times 3-$ Eq. (3), we get

$$
3 x+12 y=36
$$

$$
-3 x \pm y=-12
$$

$$
11 \mathrm{y}=24
$$

$$
\mathrm{y}=\frac{24}{11}
$$

$$
\text { Put } y=\frac{24}{11} \text { in eq. (3) }
$$

$$
3 x+\frac{24}{11}=12
$$

$$
3 x=12-\frac{24}{11}
$$

$$
3 x=\frac{132-24}{11}
$$

$$
\mathrm{x}=\frac{108}{33}=\frac{36}{11}
$$

$$
\therefore \quad B\left(\frac{36}{11}, \frac{24}{11}\right)
$$

$$
3 x+4 y \leq 36
$$

$$
2 x+y \leq 10
$$

$$
\mathbf{x} \geq \mathbf{0} \quad, \quad \mathbf{y} \geq \mathbf{0}
$$

The associated equations are

$$
\begin{align*}
& x+2 y=14 \tag{1}\\
& 3 x+4 y=36 \tag{2}\\
& 2 x+y=10 \tag{3}
\end{align*}
$$

x-intercept
Put $\mathrm{y}=0$ in eqs. (1), (2) and (3)
$\mathrm{x}+2(0)=14$
$\mathrm{x}=14$
\therefore Point is $(14,0)$
$3 x+4(0)=36$
$3 \mathrm{x}=36$
$x=\frac{36}{3}=12$
\therefore Point is $(12,0)$

$$
\begin{gathered}
2 \mathrm{x}+0=10 \\
2 \mathrm{x}=10 \\
\mathrm{x}=\frac{10}{2}=5 \\
\therefore \text { Point is }(5,0)
\end{gathered}
$$

y-intercept
Put $\quad \mathrm{x}=0$ in eqs. (1), (2) and (3)
$0+2 \mathrm{y}=14$
$\mathrm{y} \quad=\frac{14}{2}=7$
\therefore Point is $(0,7)$
$2(0)+y=10$

$$
\mathrm{y}=10
$$

\therefore Point is $(0,10)$

Test Point

Put $(0,0)$ in
$x+2 y<14$
$0+2(0)<14$
$0<14$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+2 \mathrm{y} \leq 14$ will be towards the origin side.
Put $(0,0)$ in
$3 \mathrm{x}+4 \mathrm{y}<36$
$3(0)+4(0)<36$
$0<36$
Which is true.
$\therefore \quad$ Graph of an inequality $3 x+4 y \leq 36$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}+\mathrm{y}<10$
$2(0)+0<10$
$0<10$
Which is true.

$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+\mathrm{y} \leq 10$ will be towards the origin side.

$\therefore \quad \mathrm{OABC}$ is the feasible solution region so the corner points are
$\mathrm{O}(0,0), \mathrm{A}(5,0), \mathrm{C}(0,7)$
To find B solving eq. (1) \& eq. (3)
Eq. (1) $\times 2-$ Eq. (3), we get

$$
2 x+4 y=28
$$

$\begin{aligned}-2 x \pm y & =-10 \\ 3 y & =18\end{aligned}$

$$
y=\frac{18}{3}=6
$$

$$
\text { Put } y=6 \text { in eq. (1) }
$$

$$
x+2(6)=14
$$

$$
x+12=14
$$

$$
\mathrm{x}=14-12
$$

$$
x=2
$$

$\therefore \quad B(2,6)$
(v) $\quad \mathbf{x}+3 \mathrm{y} \leq 15$

$$
2 x+y \leq 12
$$

$$
4 x+3 y \leq 24
$$

$$
\mathbf{x} \geq \mathbf{0}, \quad \mathbf{y} \geq \mathbf{0}
$$

The associated equations are
x-intercept
Put $\quad \mathrm{y}=0$ in eqs. (1), (2) and (3)
$\mathrm{x}+3(0) \quad=15$

$\mathrm{x}=15$$|$| $2 \mathrm{x}+0=12$ | |
| :--- | :--- |
| $2 \mathrm{x}=12$ | $4 \mathrm{x}+3(0)=24$ |
| $4 \mathrm{x}=24$ | |

y-intercept
Put $\mathrm{x}=0$ in eqs. (1), (2) and (3)

$0+3 y=15$	$2(0)+y=12$
y	$=12$

$y \quad=\frac{15}{3}=5$
\therefore Point is $(0,5)$

$$
\begin{aligned}
4(0)+3 y & =24 \\
3 y & =24 \\
y & =\frac{24}{3}=8
\end{aligned}
$$

\therefore Point is $(0,8)$

$$
\begin{align*}
& x+3 y=15 \\
& 2 \mathrm{x}+\mathrm{y}=12 \tag{2}\\
& 4 x+3 y=24
\end{align*}
$$

Test Point

Put $(0,0)$ in
$x+3 y<15$
$0+3(0)<15$
$0<15$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+3 \mathrm{y} \leq 15$ will be towards the origin side.
Put $(0,0)$ in
$2 \mathrm{x}+\mathrm{y}<12$
$2(0)+0<12$
$0<12$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+\mathrm{y} \leq 12$ will be towards the origin side.
Put $(0,0)$ in
$4 \mathrm{x}+3 \mathrm{y}<24$
$4(0)+3(0)<24$
$0<24$
Which is true.
$\therefore \quad$ Graph of an inequality $4 x+3 y \leq 24$ will be towards the origin side.

$\therefore \quad \mathrm{OABC}$ is the feasible solution region so the corner points are
$\mathrm{O}(0,0), \mathrm{A}(6,0), \mathrm{C}(0,5)$
To find B solving eq. (1) \& eq. (3)
Eq. (1) - Eq. (3), we get

$$
x+3 y=15
$$

$-4 x \pm 3 y=-24$
$-3 \mathrm{x}=-9$
$y=\frac{-9}{-3}=3$
Put $x=3$ in eq. (1)
$3+3 y=15$
$3 y=15-3$
$3 \mathrm{y}=12$
$y=\frac{12}{3}=4$
$\therefore \quad B(3,4)$
(vi)

$$
\begin{align*}
& 2 x+y \leq 20 \\
& 8 x+15 y \leq 120 \\
& x+y \leq 11 \\
& x \geq 0, \quad y \geq 0 \tag{1}
\end{align*}
$$

The associated equations are
$2 \mathrm{x}+\mathrm{y}=20$
$8 x+15 y=120$
$\mathrm{x}+\mathrm{y}=11$
\underline{x}-intercept
Put $y=0$ in eqs. (1), (2) and (3)
$2 \mathrm{x}+0=20$
$2 \mathrm{x}=20$
$x=\frac{20}{2}=10$
\therefore Point is $(10,0)$

$$
\begin{aligned}
& 8 x+15(0)=120 \\
& 8 x=120 \\
& x=\frac{120}{8}=15
\end{aligned}
$$

\therefore Point is $(15,0)$

$$
\begin{aligned}
\mathrm{x}+0 & =11 \\
\mathrm{x} & =11
\end{aligned}
$$

\therefore Point is $(11,0)$
y-intercept
Put $x=0$ in eqs. (1), (2) and (3)

$$
2(0)+y=20
$$

$8(0)+15 y=120$

$$
\mathrm{y}=20
$$

$15 y=120$

$$
\begin{aligned}
0+\mathrm{y} & =11 \\
\mathrm{y} & =11
\end{aligned}
$$

\therefore Point is $(0,11)$

$$
y=\frac{120}{15}=8
$$

\therefore Point is $(0,8)$

Test Point

Put $(0,0)$ in
$2 \mathrm{x}+\mathrm{y}<20$
$2(0)+0<20$
$0<20$
Which is true.
$\therefore \quad$ Graph of an inequality $2 \mathrm{x}+\mathrm{y} \leq 20$ will be towards the origin side.
Put $(0,0)$ in
$8 \mathrm{x}+15 \mathrm{y}<120$
$8(0)+15(0)<120$
$0<120$
Which is true.
$\therefore \quad$ Graph of an inequality $8 x+15 y \leq 120$ will be towards the origin side.
Put $(0,0)$ in
$x+y<11$
$0+0<11$
$0<11$
Which is true.
$\therefore \quad$ Graph of an inequality $\mathrm{x}+\mathrm{y} \leq 11$ will be towards the origin side.

$\therefore \quad \mathrm{OABCD}$ is the feasible solution region so the corner points are

$$
\begin{aligned}
& \text { O (} 0,0 \text {), A (} 10,0), \mathrm{D}(0,8) \\
& \text { To find B solving eq. (1) \& eq. (3) } \\
& \text { Eq. (1) - Eq. (3), we get } \\
& 2 \mathrm{x}+\mathrm{y}=20 \\
& -\quad x \pm y=-11 \\
& \mathrm{x}=9 \\
& \text { Put } x=9 \text { in eq. (3) } \\
& 9+\mathrm{y}=11 \\
& y=11-9 \\
& \mathrm{y}=2 \\
& \therefore \quad \mathrm{~B}(9,2) \\
& \text { To find } C \text { solving eq. (2) \& eq. (3) } \\
& \text { Eq. (2) }- \text { Eq. (3) } \times 8 \text {, we get } \\
& 8 x+15 y=120 \\
& -8 x \pm 8 y=-88 \\
& 7 y=32 \\
& y=\frac{32}{7} \\
& \text { Put } y=\frac{32}{7} \text { in eq. (3) } \\
& x+\frac{32}{7}=11 \\
& x=11-\frac{32}{7} \\
& =\frac{77-32}{7} \\
& =\frac{45}{7} \\
& \therefore \quad C\left(\frac{45}{7}, \frac{32}{7}\right)
\end{aligned}
$$

