EXERCISE 6.2

Q.1: Write down equations of the tangent and normal to the circle.
(i) $\mathrm{x}^{2}+\mathrm{y}^{2}=25$ at $(4,3)$
(Lahore Board 2011)

Solution:

$$
\begin{array}{ll}
x^{2}+y^{2} & =25 \\
x^{2}+y^{2}-25 & =0
\end{array}
$$

Compare it with

$$
\Rightarrow \quad \begin{aligned}
& x^{2}+y^{2}+2 g x+2 f y+c=0 \\
& g=0, f=0, c=-25
\end{aligned}
$$

Equation of tangent line is

$$
\begin{aligned}
& x_{x}+y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0 \\
& 4 x+3 y+0+0-25=0 \\
& 4 x+3 y-25=0
\end{aligned}
$$

Equation of normal line is

$$
\begin{aligned}
&\left(\mathrm{y}-\mathrm{y}_{1}\right)\left(\mathrm{x}_{1}+\mathrm{g}\right)=\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{y}_{1}+\mathrm{f}\right) \\
&(\mathrm{y}-3)(4+0)=(\mathrm{x}-4)(3+0) \\
& 4 \mathrm{y}-12=3 \mathrm{x}-12 \\
& 3 \mathrm{x}-4 \mathrm{y}-12+12=0 \\
& 3 \mathrm{x}-4 \mathrm{y}=0
\end{aligned}
$$

(b) $x^{2}+y^{2}=25$ at $(5 \cos \theta, 5 \sin \theta)$

Solution:

Equation of tangent line is

$$
\begin{aligned}
& \mathrm{xx}_{1}+\mathrm{yy}_{1}+\mathrm{g}\left(\mathrm{x}+\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y}_{1}\right)+\mathrm{c}=0 \\
& 5 \cos \theta \mathrm{x}+5 \sin \theta \mathrm{y}+0+0-25=0 \\
& 5 \cos \theta \mathrm{x}+5 \sin \theta \mathrm{y}-25=0 \\
& 5(\cos \theta \mathrm{x}+\sin \theta \mathrm{y}-5)=0 \\
& \mathrm{x} \cos \theta+\mathrm{y} \sin \theta-5=0 \\
& \hline
\end{aligned}
$$

Equation of normal line is

$$
\begin{aligned}
\left(\mathrm{y}-\mathrm{y}_{1}\right)\left(\mathrm{x}_{1}+\mathrm{g}\right) & =\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{y}_{1}+\mathrm{f}\right) \\
(\mathrm{y}-5 \sin \theta)(5 \cos \theta+0) & =(\mathrm{x}-5 \cos \theta)(5 \sin \theta+0)
\end{aligned}
$$

$$
\begin{aligned}
& 5 \cos \theta y-25 \sin \theta \cos \theta=5 \sin \theta x-25 \sin \theta \cos \theta \\
& 5 \sin \theta x-5 \cos \theta y=0 \\
& x \sin \theta-y \cos \theta=0
\end{aligned}
$$

(ii) $3 x^{2}+3 y^{2}+5 x-13 y+2=0 \quad$ at $\left(1, \frac{10}{3}\right)$

Solution:

$$
\begin{aligned}
& 3 x^{2}+3 y^{2}+5 x-13 y+2=0 \\
& 3\left(x^{2}+y^{2}+\frac{5}{3} x-\frac{13}{3} y+\frac{2}{3}\right)=0 \\
& x^{2}+y^{2}+\frac{5}{3} x-\frac{13}{3} y+\frac{2}{3}=0
\end{aligned}
$$

Compare it with

$$
\begin{aligned}
& x^{2}+y^{2}+2 g x+2 f y+c=0 \\
& \Rightarrow \quad 2 g=\frac{5}{3}, \quad 2 f=\frac{-13}{3}, C=\frac{2}{3} \\
& \quad g=\frac{5}{6}, f=\frac{-13}{6}
\end{aligned}
$$

Equation of tangent at $\left(1, \frac{10}{3}\right)$

$$
\begin{aligned}
& \mathrm{xx}_{1}+\mathrm{yy}_{1}+\mathrm{g}\left(\mathrm{x}+\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y}_{1}\right)+\mathrm{c}=0 \\
& \mathrm{x}+\frac{10}{3} \mathrm{y}+\frac{5}{6}(\mathrm{x}+1)-\frac{13}{6}\left(\mathrm{y}+\frac{10}{3}\right)+\frac{2}{3}=0 \\
& \mathrm{x}+\frac{10}{3} \mathrm{y}+\frac{5}{6} \mathrm{x}+\frac{5}{6}-\frac{13}{6} \mathrm{y}-\frac{65}{9}+\frac{2}{3}=0 \\
& \frac{18 \mathrm{x}+60 \mathrm{y}+15 \mathrm{x}+15-39 \mathrm{y}-130+12}{18}=0
\end{aligned}
$$

$$
33 x+21 y-103=0
$$

Equation of normal

$$
\begin{aligned}
& \left(y-y_{1}\right)\left(x_{1}+g\right)=\left(x-x_{1}\right)\left(y_{1}+f\right) \\
& \left(y-\frac{10}{3}\right)\left(1+\frac{5}{6}\right)=(x-1)\left(\frac{10}{3}+\frac{13}{6}\right) \\
& \left(y-\frac{10}{3}\right)\left(\frac{11}{6}\right)=(x-1)\left(\frac{20-13}{6}\right) \\
& 11 y-\frac{11}{3}=7 x-7 \\
& \frac{33 y-110}{3}=7 x-7 \\
& 33 y-110=21 x-21 \\
& 21 x-33 y-21+110=0 \\
& 21 x-33 y+89=0
\end{aligned}
$$

Q.2: Write down equations of the tangent and normal to the circle $4 x^{2}+4 y^{2}-16 x+$ $24 y-117=0$ at the points on circle whose abscissa is -4.

Solution:

Given

$$
4 x^{2}+4 y^{2}-16 x+24 y-117=0 \quad \text { at }=-4
$$

To find " y " put $x=-4$ in (I)

$$
\begin{array}{lr}
4(-4)^{2}+4 y^{2}-16(-4)+24 y-117=0 \\
64+4 y^{2}+64+24 y-117=0 \\
4 y^{2}+24 y+11 & =0 \\
4 y^{2}+22 y+2 y+11 \quad=0 \\
2 y(2 y+11)+1(2 y+11)=0 \\
\begin{array}{ll}
(2 y+11)(2 y+1) & =0 \\
2 y+11=0 & 2 y+1=
\end{array} \\
y=\frac{-11}{2} \quad y=\frac{-1}{2} &
\end{array}
$$

Thus the points on the circle are $\left(-4, \frac{-11}{2}\right) \&\left(-4, \frac{-1}{2}\right)$

$$
\begin{aligned}
4\left(x^{2}+y^{2}-4 x+6 y-\frac{117}{4}\right) & =0 \\
x^{2}+y^{2}-4 x+6 y-\frac{117}{4} & =0
\end{aligned}
$$

Compare it with

$$
\Rightarrow \quad \begin{aligned}
& x^{2}+y^{2}+2 g x+2 f y+c \quad=0 \\
& 2 g=-4 \quad, 2 f=6, c=\frac{-117}{4} \\
& g=-2 \quad, \quad f=3
\end{aligned}
$$

Equation of tangent at $\left(-4, \frac{-1}{2}\right)$

$$
\begin{aligned}
& \mathrm{xx}_{1}+\mathrm{y}_{1}+\mathrm{g}\left(\mathrm{x}+\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y}_{1}\right)+\mathrm{c}=0 \\
& -4 \mathrm{x}-\frac{1}{2} \mathrm{y}-2(\mathrm{x}-4)+3\left(\mathrm{y}-\frac{1}{2}\right)-\frac{117}{4}=0 \\
& -4 \mathrm{x}-\frac{\mathrm{y}}{2}-2 \mathrm{x}+8+3 \mathrm{y}-\frac{3}{2}-\frac{117}{4}=0 \\
& \frac{-16 \mathrm{x}-2 \mathrm{y}-8 \mathrm{x}+32+12 \mathrm{y}-6-117}{4}=0 \\
& -24 \mathrm{x}+10 \mathrm{y}-91=0 \\
& -(24 \mathrm{x}-10 \mathrm{y}+91)=0 \\
& 24 \mathrm{x}-10 \mathrm{y}+91=0
\end{aligned}
$$

Equation of normal at $\left(-4, \frac{-1}{2}\right)$

$$
\begin{aligned}
& \left(y-y_{1}\right)\left(x_{1}+g\right)=\left(x-x_{1}\right)\left(y_{1}+f\right) \\
& \left(y+\frac{1}{2}\right)(-4-2)=(x+4)\left(\frac{-1}{2}+3\right) \\
& \left(y+\frac{1}{2}\right)(-6)=(x+4)\left(\frac{5}{2}\right) \\
& -6 y-3=\frac{5 x+20}{2} \\
& -12 y-6=5 x+20 \\
& 5 x+12 y+20+6=0 \\
& 5 x+12 y+26=0
\end{aligned}
$$

Equation of tangent at $\left(-4, \frac{-11}{2}\right)$

$$
\begin{aligned}
& \mathrm{xx}_{1}+\mathrm{yy}_{1}+\mathrm{g}\left(\mathrm{x}+\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y}_{1}\right)+\mathrm{c}=0 \\
& -4 \mathrm{x}-\frac{11}{2} \mathrm{y}-2(\mathrm{x}-4)+3\left(\mathrm{y}-\frac{11}{2}\right)-\frac{117}{4}=0 \\
& -4 \mathrm{x}-\frac{11}{2} \mathrm{y}-2 \mathrm{x}+8+3 \mathrm{y}-\frac{33}{2}-\frac{117}{4}=0 \\
& \frac{-16 x-22 \mathrm{y}-8 \mathrm{x}+32+12 \mathrm{y}-66-117}{4}=0 \\
& -24 \mathrm{x}-10 \mathrm{y}-151=0 \\
& -(24 x+10 y+151)=0 \\
& 24 x+10 y+151=0
\end{aligned}
$$

Equation of normal at $\left(-4, \frac{-11}{2}\right)$

$$
\begin{aligned}
& \left(y-y_{1}\right)\left(x_{1}+g\right)=\left(x-x_{1}\right)\left(y_{1}+f\right) \\
& \left(y+\frac{11}{2}\right)(-4-2)=(x+4)\left(\frac{-11}{2}+3\right) \\
& \left(y+\frac{11}{2}\right)(-6)=(x+4)\left(\frac{-5}{2}\right) \\
& -6 y-33=\frac{-5 x-20}{2} \\
& -12 y-66=-5 x-20 \\
& 5 x-12 y-66+20=0 \\
& 5 x-12 y-46=0
\end{aligned}
$$

Q.3: Check the position of the point $(5,6)$ with respect to the circle.

(i) $\mathrm{x}^{2}+\mathrm{y}^{2}=81$
(Lahore Board 2009, 2010)

Solution:

Given $x^{2}+y^{2}-81=0$
Put $(5,6)$ in L.H.S of (I)
$=\quad(5)^{2}+(6)^{2}-81$
$=\quad 25+36-81$
$=-20<0 \quad(-\mathrm{ve})$
then $(5,6)$ lies inside the circle.
(ii) $\quad 2 \mathrm{x}^{2}+2 \mathrm{y}^{2}+12 \mathrm{x}-8 \mathrm{y}+1=0$

(Lahore Board 2011)

Solution:

Given $2 x^{2}+2 y^{2}+12 x-8 y+1=0$
Put $(5,6)$ in L.H.S of (i)
$=2(5)^{2}+(6)^{2}+12(5)-8(6)+1$
$=\quad 50+72+60-48+1$
$=135>0 \quad(+\mathrm{ve})$
Then $(5,6)$ lies outside the circle.
Q.4: Find length of the tangent drawn from the point $(-5,4)$ to the circle $5 x^{2}+5 y^{2}$ $-10 x+15 y-131=0$
(Lahore Board 2009)

Solution:

Given $5 x^{2}+5 y^{2}-10 x+15 y-131=0$
Dividing throughout by 5

$$
\begin{aligned}
x^{2}+y^{2}-2 x+3 y-\frac{131}{5} & =0 \\
\text { Length of Tangent } & \left.=\sqrt{x_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}+2 \mathrm{gx}_{1}+2 \mathrm{fy}_{1}+\mathrm{C}}\right) \\
& =\sqrt{(-5)^{2}+(4)^{2}-2(-5)+3(4)-\frac{131}{5}} \\
& =\sqrt{25+16+10+12-\frac{131}{5}} \\
& =\sqrt{63-\frac{131}{5}} \\
& =\sqrt{\frac{315-131}{5}} \\
& =\sqrt{\frac{184}{5}} \text { Ans. }
\end{aligned}
$$

Q.5: Find the length of the chord cut off from the line $2 x+3 y=13$ by the circle $x^{2}+y^{2}=26$.

Solution:

Given line $\quad 2 x+3 y=13 \quad$........ (i)
Circle is $\quad x^{2}+y^{2}=26$........ (ii)
From (i) $y=\frac{13-2 x}{3}$
Put in (ii)

$$
\begin{aligned}
& x^{2}+\left(\frac{13-2 x}{3}\right)^{2}=26 \\
& x^{2}+\frac{169+4 x^{2}-52 x}{9}=26 \\
& 9 x^{2}+169+4 x^{2}-52 x=236 \\
& 13 x^{2}-52 x-65=0 \\
& x^{2}-4 x-5=0 \\
& x^{2}-5 x+x-5=0 \\
& x(x-5)+1(x-5)=0
\end{aligned}
$$

$$
\begin{aligned}
& (x-5)(x+1)=0 \\
& x=5 \quad x=-1
\end{aligned}
$$

$$
\text { If } x=5=y=\frac{13-2(5)}{3}
$$

$$
y=\frac{13-10}{3}
$$

$$
y=\frac{3}{3}=1
$$

and if $x=-1 \quad y=\frac{13-2(-1)}{3}$
$y=\frac{13+2}{3}=\frac{15}{3}$
$y=5$

Hence points of intersection are $A(5,1) \& B(-1,5)$

$$
\begin{aligned}
\text { Required Length of chord } & =|\mathrm{AB}|=\sqrt{(-1-5)^{2}+(5-1)^{2}} \\
& =\sqrt{36+16} \\
& =\sqrt{52} \\
& =2 \sqrt{13} \text { Ans }
\end{aligned}
$$

Q.6: Find the coordinates of the points of intersection of line $x+2 y=6$ with the circle $x^{2}+y^{2}-2 x-2 y-39=0$
Solution:

Hence points of intersection are

$$
\begin{aligned}
& \text { Line is } x+2 y=6 \quad \text {....... (i) } \\
& \text { Circle is } x^{2}+y^{2}-2 x-2 y-39=0 \text {....... (ii) } \\
& \text { From (i) } x=6-2 y \text {...... (iii) } \\
& (6-2 y)^{2}+y^{2}-2(6-2 y)-2 y-39=0 \\
& 36+4 y^{2}-24 y+y^{2}-12+4 y-2 y-39=0 \\
& 5 y^{2}-22 y-15=0 \\
& 5 y^{2}-25 y+3 y-15=0 \\
& 5 y(y-5)+3(y-5)=0 \\
& \Rightarrow \quad y-5=0 \quad 5 y+3=0 \\
& y \quad=5 \quad \& \quad y \quad=\frac{-3}{5} \\
& \text { if } y=5 \quad x=6-2(5) \quad \text { (By iii) } \\
& \mathrm{x}=6-10 \\
& \mathrm{x}=-4 \\
& \text { if } y=\frac{-3}{5} \quad x=6-2\left(\frac{-3}{5}\right) \quad \text { (By iii) } \\
& x=6+\frac{6}{5} \quad \Rightarrow \quad x=\frac{36}{5}
\end{aligned}
$$

$(-4,5) \quad \&\left(\frac{36}{5}, \frac{-3}{5}\right) \quad$ Ans.

Q. 7 Find equations of the tangents to the circle $x^{2}+y^{2}=2$

(i) Parallel the $x-2 y+1=0$

Solution:

Let required tangent $\mathrm{y}=\mathrm{mx}+\mathrm{c} \rightarrow$ (i)
Given circle is $x^{2}+y^{2}=2 \quad \Rightarrow \quad r^{2}=2$
Give line is $\mathrm{x}-2 \mathrm{y}+1=0$
Slope of line $\quad=m=-\frac{\text { cofficient of } x}{\text { coefficient of } y}=-\frac{1}{-2}=\frac{1}{2}$
Since the tangent line is parallel to this line so $\mathrm{m}=\frac{1}{2}$
We know that condition of tangency for circle is

$$
\begin{aligned}
& \mathrm{c}^{2}=\mathrm{r}^{2}\left(1+\mathrm{m}^{2}\right) \\
& \mathrm{c}^{2}=2\left(1+\frac{1}{4}\right)
\end{aligned}
$$

$$
=2\left(\frac{5}{4}\right)=\frac{10}{4}
$$

$$
\Rightarrow \quad c \quad=\quad \pm \frac{\sqrt{10}}{2} \text { Substitute values in (i) }
$$

$$
\mathrm{y}=\frac{1}{2} \times \frac{\sqrt{10}}{2}=1000
$$

$$
y=\frac{x \pm \sqrt{10}}{2}
$$

$$
2 y=x \pm \sqrt{10}
$$

$$
x-2 y \pm \sqrt{10}=0 \quad \text { Required equations of tangent. }
$$

(ii) Perpendicular to the line $3 x+2 y=6$

Solution:

Given circle $x^{2}+y^{2}=2 \Rightarrow r^{2}=2$
Given line $3 x+2 y=6$
$\therefore \quad$ Slope of line $=\frac{- \text { coeff of } x}{+ \text { coeff of } y}=-\frac{3}{2}$
But since tangent line is perpendicular to this line so its slope will be $=\frac{-1}{m}=\frac{2}{3}=\mathrm{m}$
We know that condition of tangency of circle is

$$
\begin{aligned}
& \mathrm{c}^{2}=\mathrm{r}^{2}\left(1+\mathrm{m}^{1^{2}}\right) \\
& \mathrm{c}^{2}=2\left(1+\frac{4}{9}\right) \\
& \mathrm{c}^{2}=2\left(\frac{13}{9}\right)=\frac{26}{9} \\
& \mathrm{c}= \pm \frac{\sqrt{26}}{3} \\
& \mathrm{y}=\frac{2 \mathrm{x} \pm \sqrt{26}}{3} \Rightarrow 2 \mathrm{x}-3 \mathrm{y} \pm \sqrt{26}=0 \quad \text { Ans. }
\end{aligned}
$$

Required equations of tangents are

$$
\begin{aligned}
& y=m x+c \\
& y=\frac{2}{3} x \pm \frac{\sqrt{26}}{3} \\
& y=\frac{2 x \pm \sqrt{26}}{3} \\
& 2 x-3 y \pm \sqrt{26}=0 \quad \text { Ans }
\end{aligned}
$$

Q.8: Find equations of tangent drawn from

(i) $(0,5)$ to $x^{2}+y^{2}=16$

Solution:

Given circle $x^{2}+y^{2}=16==1011000$
$\Rightarrow \quad r^{2}=16 \quad r=4$ \& Center $(0,0)$
Let the tangent drawn from the $\mathrm{P}(0,5)$ point $(0,5)$ to the circle touch circle at point ($\mathrm{x}_{1}, \mathrm{y}_{1}$)
$\therefore \quad$ Given circle becomes

$$
\begin{equation*}
\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}=16 \tag{1}
\end{equation*}
$$

Now $\mathrm{m}_{1}=$ Slope of PA $=\frac{\mathrm{y}_{1}-5}{\mathrm{x}_{1}-0}=\frac{\mathrm{y}_{1}-5}{\mathrm{x}_{1}}$
$\mathrm{m}_{2}=$ Slope of $\mathrm{CA}=\frac{\mathrm{y}_{1}-0}{\mathrm{x}_{1}-0}=\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}$

Since two lines are perpendicular $\quad \because \quad \mathrm{m}_{1} \times \mathrm{m}_{2}=-1$

$$
\begin{align*}
\frac{\mathrm{y}_{1}-5}{\mathrm{x}_{1}} \times \frac{\mathrm{y}_{1}}{\mathrm{x}_{1}} & =-1 \\
\mathrm{y}_{1}^{2}-5 \mathrm{y}_{1} & =-\mathrm{x}_{1}^{2} \\
\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2} & =5 \mathrm{y}_{1} \tag{2}
\end{align*}
$$

$$
\begin{array}{rlrl}
16 & & =5 y_{1} & (\text { using } 1) \\
\Rightarrow & & y_{1} \quad=\frac{16}{5} & \text { Put in (2) } \\
\mathrm{x}_{1}{ }^{2}+\frac{256}{25} & =5\left(\frac{16}{5}\right) \\
\mathrm{x}_{1}^{2} & =16-\frac{256}{25} \\
\mathrm{x}_{1}^{2} & =\frac{400-256}{25} & \\
& =\frac{144}{25} \quad \Rightarrow \quad x_{1}= \pm \frac{12}{5}
\end{array}
$$

We have two points $\left(\frac{12}{5}, \frac{16}{5}\right) \&\left(\frac{-12}{5}, \frac{16}{5}\right)$
Now $\mathrm{m}_{1}=$ slope of line PA $=\frac{\mathrm{y}_{1}-5}{\mathrm{x}_{1}}$ at $\left(\frac{12}{5}, \frac{16}{5}\right)$
Now $\begin{aligned} \mathrm{m}_{1} & =\frac{\frac{16}{5}-5}{\frac{12}{5}} \\ & =\frac{\frac{16-25}{5}}{\frac{12}{5}}=\frac{-9}{12}=\frac{-3}{4}\end{aligned}$
Equation of tangent at point $\left(\frac{12}{5}, \frac{16}{5}\right)$

$$
\begin{array}{ll}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\frac{16}{5} & =\frac{-3}{4}\left(x-\frac{12}{5}\right) \\
\frac{5 y-16}{5} & =\frac{-3}{4}\left(\frac{5 x-12}{5}\right) \\
20 y-64 & =-15 x+36 \\
15 x+20 y & =100
\end{array}
$$

Ans.
Next, $\quad m_{1} \quad=$ Slope of line PA at point $\left(\frac{-12}{5}, \frac{16}{5}\right)$

$$
m_{1}=\frac{\frac{16}{5}-5}{\frac{-12}{5}}=\frac{16-25}{-12}=\frac{-9}{-12}=\frac{3}{4}
$$

Equation of tangent at point $\left(\frac{-12}{5}, \frac{16}{5}\right)$ is given by

$$
\begin{aligned}
& y-\frac{16}{5}=\frac{3}{4}\left(x+\frac{12}{5}\right) \\
& \frac{5 y-6}{5}=\frac{3}{4}\left(\frac{5 x+12}{5}\right) \\
& 20 y-64=15 x+36 \\
& 15 x-20 y+100=0 \quad \text { Ans }
\end{aligned}
$$

(ii) Find equation of tangents drawn from $(-1,2)$ to the circle $x^{2}+y^{2}+4 x+2 y=0$.

Solution:

Given $\quad x^{2}+y^{2}+4 x+2 y=0$
Center $=\left(-\frac{4}{2}, \frac{2}{-2}\right)=(-2,-1)$
Let tangent drawn from $(-1,2)$ to the circle touch the circle at the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ then
(I)

$$
\begin{aligned}
& x_{1}^{2}+y_{1}^{2}+4 x_{1}+2 y_{1}=0 \\
& \mathrm{~m}_{1}=\text { Slope of PA }=\frac{y_{1}-2}{x_{1}+1} \\
& \mathrm{~m}_{2}=\text { Slope of CA }=\frac{y_{1}+1}{x_{1}+2}
\end{aligned}
$$

Since two lines are perpendicular so

$$
\begin{align*}
& \mathrm{m}_{1} \mathrm{~m}_{2}=-1 \\
& \frac{\mathrm{y}_{1}-2}{\mathrm{x}_{1}+1} \times \frac{\mathrm{y}_{1}+1}{\mathrm{x}_{1}+2}=-1 \\
& y_{1}{ }^{2}+y_{1}-2 y_{1}-2=-\left(x_{1}{ }^{2}+3 x_{1}+2\right) \\
& \mathrm{y}_{1}{ }^{2}-\mathrm{y}_{1}-2+\mathrm{x}_{1}{ }^{2}+3 \mathrm{x}_{1}+2=0 \\
& \mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}-3 \mathrm{x}_{1}-\mathrm{y}_{1}=0 \tag{3}\\
& -x_{1}-3 y_{1}=0 \\
& \Rightarrow \mathrm{x}_{1}=-3 \mathrm{y}_{1} \\
& 9 y_{1}{ }^{2}+y_{1}{ }^{2}-9 y_{1}-y_{1}=0 \\
& 10 \mathrm{y}_{1}{ }^{2}-10 \mathrm{y}_{1}=0
\end{align*}
$$

(4) Put in (3)
$10 \mathrm{y}_{1}\left(\mathrm{y}_{1}-1\right)=0$
$\Rightarrow \mathrm{y}_{1}=0 \quad, \quad \mathrm{y}_{1}=1$
If $\mathrm{y}_{1}=0 \quad \mathrm{x}_{1}=0 \quad\left(\right.$ Using - 4) if $\mathrm{y}_{1}=1, \mathrm{x}_{1}=-3$
Required points of tangency are $(0,0) \&(-3,1)$

At Point (0, 0)
$\mathrm{m}_{1}=$ Slope of $(\mathrm{PA})=\frac{-2}{1}=-2$
Equation of tangent at point $(0,0)$
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-0=-2(x-0)$
$y=-2 x$
$2 \mathrm{x}+\mathrm{y}=0 \quad$ Ans

$$
\text { At Point }(-3,1)
$$

$$
\mathrm{m}_{1}=\text { Slope of }(\mathrm{PA})=\frac{1-2}{-3+1}=\frac{-1}{-2}
$$

Equation of tangent at point $(-3,1)$

$$
\begin{aligned}
& \mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right) \\
& \mathrm{y}-1=\frac{1}{2}(\mathrm{x}+3) \\
& 2 \mathrm{y}-2=\mathrm{x}+3 \\
& \mathrm{x}-2 \mathrm{y}+5=0 \quad \text { Ans }
\end{aligned}
$$

Q. 8 (iii): $(-7,-2)$ to $(x+1)^{2}+(y-2)^{2}=26$

Solution:

Given circle $(x+1)^{2}+(y-2)^{2}=26$
Center $=(-1,2)$
Let tangent drawn from point $(-7,-2)$ to the circle touch it at point ($\mathrm{x}_{1}, \mathrm{y}_{1}$).
Given circle becomes

$$
\begin{align*}
& \left(x_{1}+1\right)^{2}+\left(y_{1}-2\right)^{2}=26 \\
& x_{1}^{2}+1+2 x_{1}+y_{1}^{2}+4-4 y_{1}-26=0 \\
& x_{1}^{2}+y_{1}^{2}+2 x_{1}-4 y_{1}-21=0 \tag{i}
\end{align*}
$$

Now $\mathrm{m}_{1}=$ Slope of PA $=\frac{\mathrm{y}_{1}+2}{\mathrm{x}_{1}+7} \quad \mathrm{~m}_{2}=$ Slope of CA $=\frac{\mathrm{y}_{1}-2}{\mathrm{x}_{1}+1}$
Since lines are perpendicular
So $\quad \mathrm{m}_{1} \mathrm{~m}_{2}=-1$

$$
\begin{equation*}
x_{1}^{2}+y_{1}^{2}+8 x_{1}+3=0 \tag{ii}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{y_{1}+2}{x_{1}+7} \times \frac{y_{1}-2}{x_{1}+1}=-1 \\
& y_{1}^{2}-4=-x_{1}^{2}-8 x_{1}-7
\end{aligned}
$$

Subtracting

$$
\begin{array}{r}
-x_{1}^{2} \pm y_{1}^{2} \pm 2 x_{1} \mp 21 \mp 4 y_{1}=0 \\
6 x_{1}+4 y_{1}+24=0 \\
4 y_{1}=-24-6 x_{1}
\end{array}
$$

$$
\begin{aligned}
y_{1} & =\frac{-2\left(12+3 x_{1}\right)}{4} \\
& =\frac{-\left(12+3 x_{1}\right)}{2}
\end{aligned}
$$

Put in (ii)

$$
\begin{aligned}
& x_{1}^{2}+\frac{\left(12+3 x_{1}\right)^{2}}{4}+8 x_{1}+3=0 \\
& x_{1}^{2}+\frac{144+9 x_{1}{ }^{2}+72 x_{1}}{4}+8 x_{1}+3=0 \\
& 4 x_{1}{ }^{2}+144+9 x_{1}{ }^{2}+72 x_{1}+32 x_{1}+12=0 \\
& 13 x_{1}{ }^{2}+104 x_{1}+156=0 \\
& 13\left(x_{1}{ }^{2}+8 x_{1}+12\right)=0 \\
& x_{1}{ }^{2}+8 x_{1}+12 \quad=0 \\
& x_{1}^{2}+6 x_{1}+2 x_{1}+12=0 \\
& \left(x_{1}+2\right)\left(x_{1}+6\right) \quad=0 \quad=>x_{1}=2 \quad \& \quad x_{1}=-6 \\
& \text { if } x_{1}=-2 ; y_{1}=-\left(\frac{3(-2)+12}{2}\right)=-\left(\frac{-6+12}{2}\right)=-3 \\
& \text { if } x_{1}=-6 ; y_{1}=-\left(\frac{3(-6)+12}{2}\right)=\left(\frac{-18+12}{2}\right)=3
\end{aligned}
$$

Then points of tangency are $(-2,-3) \quad \&(-6,3)$
At Point $(-2,-3)$
At Point $(-6,3)$
$\mathrm{m}_{1}=$ Slope of $\mathrm{PA}=\frac{-3+2}{-2+7}=\frac{-1}{5}$
Equation of tangent at point $(-2,-3)$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y+3=\frac{-1}{5}(x+2)$
$5(\mathrm{y}+3)=-(\mathrm{x}+2)$
$5 y+15+x+2=0$
$\mathrm{x}+5 \mathrm{y}+17=0$
$\mathrm{m}_{1}=$ Slope of $(\mathrm{PA})=\frac{3+2}{-6+7}=\frac{5}{1}=5$
Equation of tangent at point $(-6,3)$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=5(x+6) \\
& y-3=5 x+30
\end{aligned}
$$

$$
5 x-y+33=0 \quad \text { Ans }
$$

Q.9: Find an equation of the chord of contact of the tangents drawn from $(4,5)$ to the circle $2 x^{2}+2 y^{2}-8 x+12 y+21=0$

Solution:

Given $\quad 2 x^{2}+2 y^{2}-8 x+12 y+21=0$
Dividing throughout by 2

$$
x^{2}+y^{2}-4 x+6 y+\frac{21}{2}=0
$$

Now Let points of contact of the two tangents be $\left.p\left(x, y_{1}\right) Q, x_{2}, y_{2}\right)$ An equation of the tangent at $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is

$$
\begin{equation*}
x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0 \tag{1}
\end{equation*}
$$

Since $(-\mathrm{g},-\mathrm{f})=(2,-3)$

$$
\mathrm{g}=-2 \quad \mathrm{f}=3 \quad \text { Put in } \mathrm{I}
$$

$$
\begin{equation*}
x x_{1}+y_{1}-2\left(x+x_{1}\right)+3\left(y+y_{1}\right)+\frac{21}{2}=0 \tag{2}
\end{equation*}
$$

Since it passes through $(4,5)$

$$
4 x_{1}+5 y_{1}-2\left(4+x_{1}\right)+3\left(5+y_{1}\right)+\frac{21}{2}=0
$$

$$
4 x_{1}+5 y_{1}-8-2 x_{1}+15+3 y_{1}+\frac{21}{2}=0
$$

$$
2 \mathrm{x}_{1}+8 \mathrm{y}_{1}+7+\frac{21}{2}=0,000
$$

$$
4 x_{1}+16 y_{1}+14+21=0
$$

$$
\begin{equation*}
4 \mathrm{x}_{1}+16 \mathrm{y}_{1}+35=0 \tag{i}
\end{equation*}
$$

Similarly for point $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, we have

$$
\begin{equation*}
4 x_{2}+16 y_{2}+35=0 \tag{ii}
\end{equation*}
$$

(i) \& (ii) Show that both the points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \& \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ lie on $4 \mathrm{x}+16 \mathrm{y}+35=0$ and so it is the required equation of the chord of contact.

EXERCISE 6.3

Q.1: Prove that normal lines of a circle pass through the center of the circle. (Lahore Board 2009)

Solution:

Let us consider a circle with center $(0,0)$ and radius r .
Therefore equation of circle is

