(i) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(ii) $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$

Special case of an Ellipse

Circle is a special case of an Ellipse. In circle ' 'e' $=0$

Parametric Equations of an Ellipse

$x=a \cos \theta, \quad y=b \sin \theta \quad$ are Parametric Equations of Ellipse.

Important points about an Ellipse

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(1) Eccentricity
$\mathrm{e}^{2}=\frac{a^{2}-b^{2}}{a^{2}}$
$(a e)^{2}=a^{2}-b^{2}$
$c^{2}=a^{2}-b^{2}$
(2) $\operatorname{Foci}(\pm \mathrm{ae}, 0)$ or $(\pm \mathrm{c}, 0)$
(3) Length of major axis $=2 \mathrm{a}$
(4) Length of minor axis $=2 \mathrm{~b}$
(5) Equations of directrix $x: x= \pm \frac{a}{e}$
(6) Length of latus rectum $=\frac{2 b^{2}}{a}$
(7) Center $(0,0)$
(8) Vertices ($\pm \mathrm{a}, 0)$
(9) Covertices ($0, \pm \mathrm{b}$)

Note:
If center is other than $(0,0)$ then equations of ellipse be comes
$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

$$
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

(1) Eccentricity

$$
\begin{aligned}
& \mathrm{e}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}} \\
& (\mathrm{ae})^{2}=\mathrm{a}^{2}-\mathrm{b}^{2} \\
& \mathrm{c}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2} \text { where } \mathrm{c}=\mathrm{ae}
\end{aligned}
$$

(2) Foci $(0, \pm \mathrm{ae})$ or $(0, \pm \mathrm{c})$
(3) Length of major axis $=2 \mathrm{a}$
(4) Length of minor axis $=2 b$
(5) Equations of directrix : $y= \pm \frac{a}{e}$
(6) Length of latus rectum $=\frac{2 b^{2}}{a}$
(7) Center (0,0)
(8) Vertices ($0, \pm \mathrm{a}$)
(9) Covertices $(\pm b, 0)$

EXERCISE 6.5

Q.1: Find an equation of the Ellipse with given data and sketch its graph.
(i) Foci $(\pm 3,0)$ and minor axis of length 10.
(Lahore Board 2009)

Solution:

Given $(\pm \mathrm{ae}, 0)=(\pm 3,0)$

We know that $c^{2}=a^{2}-b^{2}$

$$
\begin{aligned}
(3)^{2} & =a^{2}-(5)^{2}= \\
9 & =a^{2}-25 \\
9+25 & =a^{2} \\
\mathrm{a}^{2} & =34 \Rightarrow a \square
\end{aligned}
$$

Required equation of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\frac{x^{2}}{34}+\frac{y^{2}}{25}=1
$$

Here vertices are

$$
\begin{aligned}
& =\quad(\pm a, 0) \\
& =\quad(\pm \sqrt{34}, 0)
\end{aligned}
$$

Covertices are $(0, \pm b)$

$$
=\quad(0, \pm 5)
$$

(ii) Foci $(0,-1) \&(0,-5)$ and major axis of length 6.

Solution:

We know that center $=$ mid point of foci

$$
\begin{aligned}
& =\left(\frac{0+0}{2}, \frac{-1-5}{2}\right) \\
& =(0,-3)
\end{aligned}
$$

Also we know that
$\mathrm{C}=$ distance between centre and focus
$\mathrm{C}=\sqrt{(0-0)^{2}+(-3+1)^{2}}=\sqrt{4} \mathrm{CM} .0 \mathrm{O}$
$C=\sqrt{4}=2$
Given $2 \mathrm{a}=6$

$$
a=3
$$

We know for Ellipse

$$
\begin{array}{ll}
c^{2}=a^{2}-b^{2} & \Rightarrow \quad(2)^{2}=(3)^{2}-b^{2} \\
4-9=-b^{2} & \Rightarrow \quad b^{2}=5
\end{array}
$$

With center $(0,-3)$, required equation of the ellipse is

$$
\begin{aligned}
& \frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1 \\
& \frac{(x-0)^{2}}{5}+\frac{(y+3)^{2}}{(3)^{2}}=1 \\
& \frac{x^{2}}{5}+\frac{(y+3)^{2}}{9}=1
\end{aligned}
$$

(iii) Foci $(-3 \sqrt{3}, 0) \quad \& \operatorname{Vertices}(\pm 6,0)$

(Lahore Board 2009)

Solution:

$(\pm \mathrm{ae}, 0)=(\pm 3 \sqrt{3}, 0) \quad \& \quad(\pm \mathrm{a}, 0)=(\pm 6,0)$ $\mathrm{ae}=3 \sqrt{3} \quad \mathrm{a}=6$ $c=3 \sqrt{3} \quad a=6$
We know that $c^{2}=a^{2}-b^{2}$

$$
\begin{aligned}
(3 \sqrt{3})^{2} & =(6)^{2}-b^{2} \\
27 & =36-b^{2}
\end{aligned} \quad \Rightarrow \quad b^{2}=9
$$

Required equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=10 \square \square$

$$
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
$$

Covertices are $\quad=(0, \pm \mathrm{b})$

$$
=(0, \pm 3)
$$

(iv) $\quad \operatorname{Vertices}(-1,1),(5,1) \quad$ foci $(4,1) \&(0,1)$

Solution:

| 2 a | $=\left\|\mathrm{VV}^{\prime}\right\| \quad 2 \mathrm{c}=\left\|\mathrm{FF}^{\prime}\right\|$ | |
| ---: | :--- | ---: | :--- |
| 2 a | $=\sqrt{(5+1)^{2}+(1-1)^{2}}$ | $2 \mathrm{c}=\sqrt{(0+4)^{2}+(1-1)^{2}}$ |
| 2 a | $=\sqrt{36}$ | $2 \mathrm{c}=\sqrt{16}$ |
| 2 a | $=6$ | $2 \mathrm{c}=4$ |
| a | $=3$ | $\mathrm{c}=2$ |

We know that $c^{2}=a^{2}-b^{2}$
$(2)^{2}=(3)^{2}-b^{2}$

$$
\begin{aligned}
4 & =9-b^{2} \\
b^{2} & =5
\end{aligned}
$$

Now center of ellipse $\quad=(\mathrm{h}, \mathrm{k}) \quad=$ mid point of foci

$$
=\left(\frac{4+0}{2}, \frac{1+1}{2}\right)
$$

with this center required equation of ellipse

$$
\begin{aligned}
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}} & =1 \\
\text { i.e; } \quad & \frac{(x-2)^{2}}{9}+\frac{(y-1)^{2}}{5}
\end{aligned}=1
$$

(v) \quad Foci $(\pm \sqrt{5}, 0) \&$ passing through $\left(\frac{3}{2}, \sqrt{3}\right)$

Solution:

$$
\begin{align*}
& \text { Given }(\pm \mathrm{ae}, 0) \quad=(\pm \sqrt{5}, 0) \\
& c=\sqrt{5} \text { we know that } c^{2}=a^{2}-b^{2} \\
& (\sqrt{5})^{2}=a^{2}-b^{2} \\
& 5=a^{2}-b^{2} \\
& \Rightarrow \quad a^{2}=\quad 5+b^{2} \tag{1}\\
& \text { Since Ellipse is } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{2}
\end{align*}
$$

and it is passing through point $\left(\frac{3}{2}, \sqrt{3}\right)$ therefore it becomes $\frac{9}{4 \mathrm{a}^{2}}+\frac{3}{\mathrm{~b}^{2}}=1$
from (1) we have $\mathrm{a}^{2}=5+\mathrm{b}^{2} \quad$ Put in (2)

$$
\begin{aligned}
& \frac{9}{4\left(5+b^{2}\right)}+\frac{3}{b^{2}}=1 \\
& \frac{9 b^{2}+12\left(5+b^{2}\right)}{4 b^{2}\left(5+b^{2}\right)}=1 \\
& 9 b^{2}+60+12 b^{2}=20 b^{2}+4 b^{4} \\
& 4 b^{4}-b^{2}-60=0 \\
& \mathrm{~b}^{2}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(4)(-60)}}{2(4)} \\
& b^{2}=\frac{1 \pm \sqrt{961}}{8} \\
& =\frac{1 \pm 31}{8} \\
& \mathrm{~b}^{2}=\frac{1+31}{8}, \quad \frac{1-31}{8} \\
& \mathrm{~b}^{2}=\frac{32}{8} \quad, \quad \mathrm{~b}^{2}=\frac{-30}{8} \quad \text { (solution not possible) } \\
& \mathrm{b}^{2}=4 \\
& \text { Required equation of Ellipse } \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \text { i.e; } \quad \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \\
& \text { Vertices } \quad(\pm \mathrm{a}, 0)=(\pm 3,0) \\
& \text { Co-vertices }(0, \pm b)=(0, \pm 2)
\end{aligned}
$$

(vi) Vertices $(0, \pm 5)$, eccentricity $=\frac{\mathbf{3}}{5}$

Solution:

$$
\begin{array}{lll}
& \text { Vertices }(0, \pm \mathrm{a}) & =(0, \pm 5) \\
\mathrm{a} & =5 & \mathrm{e}=\frac{3}{5} \\
& \mathrm{ae} \quad=5 \times \frac{3}{5} \\
\Rightarrow \quad & \mathrm{c} \quad=3
\end{array}
$$

We know that

$$
\begin{array}{ll}
\mathrm{c}^{2} & =\mathrm{a}^{2}-\mathrm{b}^{2} \\
(3)^{2} & =(5)^{2}-\mathrm{b}^{2} \\
9 & =25-\mathrm{b}^{2} \\
\mathrm{~b}^{2} & =16
\end{array}
$$

Required equation of Ellipse is

$$
\begin{aligned}
& \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1 \\
& \frac{x^{2}}{16}+\frac{y^{2}}{25}=1
\end{aligned}
$$

Co-vertices

$$
\begin{aligned}
& (\pm \mathrm{b}, 0)=(\pm 4,0) \\
& \text { Foci }=(0, \pm \mathrm{c})=(0, \pm 3)
\end{aligned}
$$

(vii) Centre $(0,0)$ focus $(0,-3)$, vertex $(0,4)$ (Lahore Board 2011)

Solution:

$$
\begin{aligned}
& (0,-c)=(0,-3) \quad a=4 \\
& c=3
\end{aligned}
$$

We know that $e^{2}=\frac{a^{2}-b^{2}}{a^{2}}$

$$
\begin{aligned}
(\mathrm{ae})^{2} & =\mathrm{a}^{2}-\mathrm{b}^{2} \\
\mathrm{c}^{2} & =\mathrm{a}^{2}-\mathrm{b}^{2} \\
(3)^{2} & =16-\mathrm{b}^{2} \\
9 & =16-b^{2} \\
b^{2} & =16-9 \quad \Rightarrow \quad b^{2}=7
\end{aligned}
$$

Required equation of ellipse is $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$

$$
\Rightarrow \frac{y^{2}}{16}+\frac{x^{2}}{7}=1
$$

Its vertices are $(0, \pm \mathrm{a})$

$$
\begin{array}{ll}
= & (0, \pm 4) \\
= & (\pm \sqrt{7}, 0) \\
= & (0, \pm a \mathrm{ae}) \\
= & \left(0, \pm 4 \frac{3}{4}\right) \\
= & (0, \pm 3)
\end{array}
$$

Covertices ($\pm \mathrm{b}, 0$)
Coordinates of foci

(viii) Centre (2,2) major axis parallel to y-axis and of length 8 units, minor axis parallel to x-axis and of length 6 units.

Solution:

$$
\begin{aligned}
& \text { Center }(2,2) \text { also } 2 \mathrm{a}=8 \quad \Rightarrow \quad \mathrm{a}=4 \\
& 2 \mathrm{~b}=6 \quad \Rightarrow \quad \mathrm{~b}=3
\end{aligned}
$$

Equation of ellipse is $\quad \frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1$

$$
\Rightarrow \quad \frac{(y-2)^{2}}{16}+\frac{(x-2)^{2}}{9}=1
$$

Its vertices are $(0, \pm \mathrm{a}) \quad=\quad(0, \pm 2)$
and $e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=\frac{16-9}{16}=\frac{7}{16} \Rightarrow e=\frac{\sqrt{7}}{4}$
Coordinates of foci $=(\pm \mathrm{ae}, 0)=\left(\pm \frac{4 \sqrt{7}}{4}, 0\right)=(\pm \sqrt{7}, 0)$

$$
\begin{array}{lll}
(y-2, x-2) & = & (\pm \sqrt{7}, 0) \\
y=2 \pm \sqrt{7} & , \quad x=2
\end{array}
$$

Thus foci are $(2,2+\sqrt{7}) \& \quad(2,2-\sqrt{7})$
For vertices, we have $x-2=0 \quad y-2= \pm a$

$$
x=2 \quad y=2 \pm 4 \Rightarrow 6,-2
$$

So vertices are $(2,6),(2,-2)$
Next we have

$$
\begin{array}{lll}
\mathrm{x}-2 & = \pm \mathrm{b}, & \mathrm{y}-2=0 \\
\mathrm{x} & =2 \pm 3, & \mathrm{y}=2
\end{array}
$$

So covertices are $(5,2) \&(-1,2)$

(ix) Center (0,0) symmetric with respect to both the axes and passing through the points $(2,3)$ and $(6,1)$.

Solution:

We know that equation of ellipse with center $(0,0)$ is given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Since it passes through the points $(2,3) \&(6,1)$

$$
\begin{equation*}
\frac{4^{2}}{\mathrm{a}^{2}}+\frac{9^{2}}{\mathrm{~b}^{2}}=1 \quad \text { (I) } \quad \frac{36}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=1 \tag{II}
\end{equation*}
$$

Subtracting

$$
\begin{gathered}
4 b^{2}+9 a^{2}=a^{2} b^{2} \\
-36 b^{2} \pm a^{2}=-a^{2} b^{2} \\
\hline-32 b^{2}+8 a^{2}=0 \\
8 a^{2}=32 b^{2} \\
a^{2}=4 b^{2} \quad \text { Put in (I) } \\
\frac{4}{4 b^{2}}+\frac{9}{b^{2}}=1 \\
\frac{1+9}{b^{2}}=1 \\
10=b^{2} \quad a^{2}=40
\end{gathered}
$$

Required equation of ellipse is

$$
\frac{x^{2}}{40}+\frac{y^{2}}{10}=1
$$

Vertices are $(\pm \mathrm{a}, 0)=(\pm \sqrt{40}, 0)=(\pm 2 \sqrt{10}, 0)$
Covertices

$$
(0, \pm \mathrm{b})=(0, \pm \sqrt{10})
$$

Foci

$$
(\pm \sqrt{30}, 0)
$$

(x) Center $(0,0)$ major axis horizontal, the points $(3,1)(4,0)$ lie on the graph.

Solution:

We know that equation of Ellipse with center $(0,0)$ is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Since it passes though the points $(3,1) \&(4,0)$
For (3, 1)
For (4, 0)
$\frac{9}{a^{2}}+\frac{1}{b^{2}}=1$
(1) $\frac{16}{\mathrm{a}^{2}}+\frac{0}{\mathrm{~b}^{2}}=1$

$$
\begin{array}{ll}
\mathrm{a}^{2}= & 16 \tag{2}\\
& \frac{9}{16}+\frac{1}{\mathrm{~b}^{2}}=1 \\
\frac{1}{\mathrm{~b}^{2}}=1-\frac{9}{16}=\frac{7}{16} & \mathrm{~b}^{2}=\frac{16}{7}
\end{array}
$$

Required equation of ellipse is

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{x^{2}}{16}+\frac{y^{2}}{16}=1 \\
& \frac{x^{2}}{16}+\frac{7 y^{2}}{16}=1
\end{aligned}
$$

Vertices

$$
(\pm \mathrm{a}, 0) \quad=(\pm 4,0)
$$

Covertices $(0, \pm \mathrm{b}) \quad=\left(0, \pm \frac{4}{\sqrt{7}}\right)$
Foci $\quad\left(\pm 4 \sqrt{\frac{6}{7}}, 0\right)$

Q.2: Find the center, foci, eccentricity, vertices and directrix of the ellipse whose equation is given.
(i) $x^{2}+4 y^{2}=16 \quad$ (Lahore Board 2009 (Supply))

Solution:

$$
\begin{aligned}
& x^{2}+4 y^{2}=16 \\
& \frac{x^{2}}{16}+\frac{y^{2}}{4}=1
\end{aligned}
$$

Here

$$
\begin{aligned}
& \mathrm{a}^{2}=16 \quad \mathrm{~b}^{2}=4 \\
& \mathrm{e}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{16-4}{16}=\frac{12}{16}=\frac{3}{4} \\
& \mathrm{e}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Foci are $=(\pm c, 0)=(\pm 2 \sqrt{3}, 0)$
Vertices are $=(\pm \mathrm{a}, 0) \quad=(\pm 4,0)$
Directrix are $x= \pm \frac{\mathrm{a}}{\mathrm{e}} \quad \Rightarrow x_{0}= \pm \frac{4}{\frac{\sqrt{3}}{2}}= \pm \frac{8}{\sqrt{3}}$
Clearly center of ellipse is $(0,0)$
(ii) $9 \mathbf{x}^{2}+\mathbf{y}^{2}=18$

Solution:

$$
\begin{aligned}
& 9 \mathrm{x}^{2}+\mathrm{y}^{2}=18 \\
& \frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{y}^{2}}{18}=1 \\
& \mathrm{a}^{2}=18 \quad, \quad \mathrm{~b}^{2}=2 \\
& \mathrm{e}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{18-2}{18}=\frac{16}{18}=\frac{8}{9} \quad \Rightarrow \quad \mathrm{e}=\frac{2 \sqrt{2}}{3} \\
& \text { foci are }=(0, \pm \mathrm{c})=(0, \pm 4) \\
& \text { vertices are }=(\pm \mathrm{a}, 0)=(\pm 3 \sqrt{2}, 0) \\
& \text { directrix are }=\mathrm{y}= \pm \frac{\mathrm{a}}{\mathrm{e}}= \pm \frac{3 \sqrt{2}}{\frac{2 \sqrt{2}}{3}}= \pm \frac{9}{2}
\end{aligned}
$$

Clearly center is $\quad(0,0)$
(iii) $25 \mathrm{x}^{2}+9 \mathrm{y}^{2}=\mathbf{2 2 5}$

Solution:

$$
\begin{align*}
& \frac{25 x^{2}}{225}+\frac{9 y^{2}}{225}=1 \\
& \frac{x^{2}}{9}+\frac{y^{2}}{25} \tag{I}\\
& a^{2}=25 \quad \& \quad b^{2}=9
\end{align*}
$$

Eccentricity

$$
\begin{aligned}
& \mathrm{e}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{25-9}{25}=\frac{16}{25} \Rightarrow \mathrm{e}=\frac{4}{5} \\
& \text { foci } \quad=(0, \pm \mathrm{c})=(0, \pm 4) \\
& \text { vertices }=(0, \pm \mathrm{a}) \\
& \text { Center } \\
& =(0,0)
\end{aligned}
$$

$$
\text { Directrix } \quad y= \pm \frac{\mathrm{a}}{\mathrm{e}}= \pm \frac{5}{\frac{4}{5}}= \pm \frac{25}{4}
$$

$$
\text { (iv) } \quad \frac{(2 x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=1
$$

Solution:

Let $2 \mathrm{x}-1=\mathrm{X}$
$y+2=Y$
Given equation becomes

$$
\begin{aligned}
& \frac{\mathrm{X}^{2}}{4}+\frac{\mathrm{Y}^{2}}{16}=1 \quad \text { Here } \mathrm{a}^{2}=16, \mathrm{~b}^{2}=4 \\
& \mathrm{e}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{16-4}{16}=\frac{12}{16}=\frac{3}{4}
\end{aligned}
$$

Eccentricity

$$
\mathrm{e}=\frac{\sqrt{3}}{2}
$$

Center:- For center put $X=0, \quad Y=0$

$$
\begin{array}{lll}
2 \mathrm{x}-1=0 & , & \mathrm{y}+2=0 \\
\mathrm{x}=\frac{1}{2} & , & \mathrm{y}=-2
\end{array}
$$

Required center is $\left(\frac{1}{2},-2\right)$
Foci

$$
(0, \pm \mathrm{ae}) \quad=\quad\left(0, \pm 4\left(\frac{\sqrt{3}}{2}\right)\right)
$$

$$
\begin{array}{ll}
(\mathrm{X}, \mathrm{Y}) & =(0, \pm 2 \sqrt{3}) \\
(2 \mathrm{x}-1, \mathrm{y}+2)=(0, \pm 2 \sqrt{3}) \\
2 \mathrm{x}-1=0 & = \\
\mathrm{x}=\frac{1}{2} & \\
y+2= \pm 2 \sqrt{3} \\
\mathrm{y}=-2 \pm 2 \sqrt{3}
\end{array}
$$

Required foci are $\left(\frac{1}{2},-2 \pm 2 \sqrt{3}\right)$

$$
\text { Vertices } \begin{array}{lll}
(0, \pm \mathrm{a}) & =(0, \pm 4) \\
(\mathrm{X}, \mathrm{Y}) & = & (0, \pm 4) \\
(2 \mathrm{x}-1, \mathrm{y}+2) & =(0, \pm 4) \\
2 \mathrm{x}-1=0 & & \mathrm{y}+2= \pm 4 \\
\mathrm{x}=\frac{1}{2} & & \mathrm{y}=-2 \pm 4 \\
& & y=-6,2
\end{array}
$$

$$
\text { Vertices are }\left(\frac{1}{2},-6\right),\left(\frac{1}{2}, 2\right)
$$

$$
\text { Directrices } \quad Y \quad= \pm \frac{\mathrm{a}}{\mathrm{e}}
$$

$$
y+2= \pm \frac{4}{\frac{\sqrt{3}}{2}}
$$

$$
y+2= \pm \frac{8}{\sqrt{3}} \Rightarrow \quad \Rightarrow=-2 \pm \frac{8}{\sqrt{3}}
$$

(v) $x^{2}+16 x+4 y^{2}-16 y+76=0$

Solution:

$$
\begin{aligned}
& x^{2}+16 x+4\left(y^{2}-4 y\right)=-76 \\
& \left(x^{2}+16 x+64\right)+4\left(y^{2}-4 y+4\right)=-76+64+16 \\
& (x+8)^{2}+4(y-2)^{2}=4 \\
& \frac{(x+8)^{2}}{4}+\frac{4(y-2)^{2}}{4}=\frac{4}{4} \\
& \frac{(x+8)^{2}}{4}+(y-2)^{2}=1
\end{aligned}
$$

Let

$$
x+8 \quad=X, \quad y-2=Y
$$

$$
\begin{aligned}
& \frac{X^{2}}{4}+\frac{Y^{2}}{1}=1 \quad \text { (an ellipse) } \\
& a^{2}=4, b^{2}=1 \quad e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=\frac{4-1}{4}=\frac{3}{4} \\
& \Rightarrow e=\frac{\sqrt{3}}{2}
\end{aligned}
$$

For the center Put $\quad X=0, \quad Y=0$

$$
\begin{aligned}
\mathrm{x}+8=0 & , & \mathrm{y}-2 & =0 \\
\mathrm{x}=-8 & , & \mathrm{y} & =2
\end{aligned}
$$

Required centre $(-8,2)$
Foci $=(\pm \mathrm{ae}, 0)$

$$
\begin{aligned}
& (X, Y)=\left(\pm 2\left(\frac{\sqrt{3}}{2}\right), 0\right) \\
& (x+8, y-2)=(\pm \sqrt{3}, 0) \\
& x+8= \pm \sqrt{3} r \\
& x=-8 \pm \sqrt{3} r \\
& x=0
\end{aligned}
$$

Required foci are $(-8 \pm \sqrt{3}$,
2)

Vertices are $=(\pm \mathrm{a}, 0)$
$(\mathrm{X}, \mathrm{Y}) \quad=\quad(\pm \mathrm{a}, 0)$
$(\mathrm{x}+8, \mathrm{y}-2)=(\pm 2,0)$
$x+8= \pm 2, \quad y-2=00011.001$
$\mathrm{x}=-8 \pm 2$
$y=2$
Required vertices are $(-6,2) \quad \& \quad(-10,2)$
Directrix $X= \pm \frac{\mathrm{a}}{\mathrm{e}}$

$$
\begin{aligned}
x+8 & = \pm \frac{2}{\frac{\sqrt{3}}{2}}= \pm \frac{4}{\sqrt{3}} \\
x & =-8 \pm \frac{4}{\sqrt{3}}
\end{aligned}
$$

(vi) $25 x^{2}+4 y^{2}-250 x-16 y+541=0$

Solution:

$$
\begin{array}{ll}
25 x^{2}-250 x+4 y^{2}+16 y & =-541 \\
25\left(x^{2}-10 x\right)+4\left(y^{2}-4 y\right) & =-541 \\
25\left(x^{2}-10 x+25\right)+4\left(y^{2}-4 y+4\right) & =-541+625+16
\end{array}
$$

$$
25(x-5)^{2}+4(y-2)^{2} \quad=100
$$

Dividing both sides by 100

$$
\frac{(x-5)^{2}}{4}+\frac{(y-2)^{2}}{25}=1
$$

Let

$$
x-5=X \quad, \quad y-2=Y \quad \text { above equation }
$$

Becomes

$$
\begin{array}{lll}
& \frac{\mathrm{X}^{2}}{4}+\frac{\mathrm{Y}^{2}}{25}=1 \quad & \text { (an Ellipse) } \\
& \mathrm{a}^{2}=25 \\
\mathrm{e}^{2} & =\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}} \quad=\quad \frac{25-4}{25}=\frac{\mathrm{b}^{2}=4}{25} \\
\mathrm{e} & =\frac{\sqrt{21}}{5}
\end{array}
$$

For Center Put $X=0, \quad Y=0$

$$
(x-5, y-2)
$$

$$
x-5=0 \quad, \quad y-2=0
$$

$$
x=5 \quad y=2
$$

Center is $(5,2)$
Foci $=(0, \pm a \mathrm{a})=\left(0, \pm 5 \frac{\sqrt{21}}{5}\right)$. COM

$$
(X, Y)=(0, \pm \sqrt{21})
$$

$$
(x-5, y-2)=(0, \pm \sqrt{21})
$$

$$
x-5=0 \quad, \quad y-2= \pm \sqrt{21}
$$

$$
x=5 \quad, \quad y=2 \pm \sqrt{21}
$$

Foci are $(5,2 \pm \sqrt{21})$
Vertices $(0, \pm a)=(0, \pm 5)$

$$
(\mathrm{X}, \mathrm{Y}) \quad=(0, \pm 5)
$$

$$
(x-5, y-2) \quad=(0, \pm 5)
$$

$$
x-5=0 \quad, \quad y-2= \pm 5
$$

$$
x=5 \quad, \quad y=2 \pm 5
$$

$$
y=7,-3
$$

Vertices are $(5,7) \quad \& \quad(5,-3)$

Directrix are

$$
\begin{aligned}
\mathrm{Y} & = \pm \frac{\mathrm{a}}{\mathrm{e}} \\
\mathrm{y}-2 & = \pm \frac{5}{\frac{\sqrt{21}}{5}} \\
\mathrm{y} & =2 \pm \frac{25}{\sqrt{21}}
\end{aligned}
$$

Q.3: Let a be a + ve number and $0<c<a$. Let $F(-c, 0) \& F^{\prime}(c>0)$ be two given points. Prove that the locus of points $\mathbf{p}(x, y)$ such that $|\mathbf{P F}|+\left|\mathrm{PF}^{\prime}\right|=2 \mathrm{a}$ is an ellipse.

Solution:

$$
\begin{aligned}
& \text { Given } P(x, y), F(-c, 0), F^{\prime}(c, 0) \\
& \therefore|P F|+|P F|=2 a \\
& \sqrt{(x+c)^{2}+(y-0)^{2}}+\sqrt{(x-c)^{2}+(y-0)^{2}}=2 a \\
& \sqrt{(x+c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}}
\end{aligned}
$$

Squaring on both sides

$$
\begin{array}{ll}
{\left[\sqrt{(x+c)^{2}+y^{2}}\right]^{2}} & =\left[2 a-\sqrt{(x-c)^{2}+y^{2}}\right]^{2} \\
(x+c)^{2}+y^{2} & =4 a^{2}+(x-c)^{2}+y^{2}-4 a \sqrt{(x+c)^{2}+y^{2}} \\
x^{2}+c^{2}+2 c x+y^{2} & =4 a^{2}+x^{2}+c^{2}-2 c x+y^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \\
4 c x-4 a^{2} & =-4 a \sqrt{(x-c)^{2}+y^{2}}
\end{array}
$$

(Dividing by 4)

$$
\left(c x-a^{2}\right)=-a \sqrt{(x-c)^{2}+y^{2}}
$$

Again Squaring

$$
\begin{array}{ll}
\left(c x-a^{2}\right)^{2} & =\left[-a \sqrt{(x-c)^{2}+y^{2}}\right]^{2} \\
c^{2} x^{2}+a^{4}-2 c x a^{2} & =a^{2}\left(x^{2}+c^{2}-2 c x+y^{2}\right) \\
c^{2} x^{2}+a^{4}-2 c x a^{2} & =a^{2} x^{2}+a^{2} c^{2}-2 c x a^{2}+a^{2} y^{2} \\
x^{2}\left(c^{2}-a^{2}\right)-a^{2} y^{2} & =a^{2}\left(c^{2}-a^{2}\right)
\end{array}
$$

Dividing throughout by $c^{2}-a^{2}$

$$
\begin{equation*}
x^{2}-\frac{a^{2} y^{2}}{c^{2}-a^{2}}=a^{2} \tag{1}
\end{equation*}
$$

We know that for ellipse $c^{2}=a^{2}-b^{2} \Rightarrow c^{2}-a^{2}=-b^{2}$ put in (1)

$$
x^{2}-\frac{a^{2} y^{2}}{-b^{2}}=a^{2}
$$

$$
x^{2}+\frac{a^{2} y^{2}}{b^{2}}=a^{2}
$$

(Dividing throughout by a^{2})

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{a^{2} y^{2}}{a^{2} b^{2}}=\frac{a^{2}}{a^{2}} \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { which is an ellipse }
\end{aligned}
$$

Q.4: Use problem 3 to find equation of the ellipse as locus of points $P(x, y)$ such that the sum of the distances from P to the points $(0,0) \&(1,1)$ is 2 .

Solution:

Given $\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{F}(0,0) \& \mathrm{~F}^{\prime}(1,1)$ Also given that $2 \mathrm{a}=2$
For ellipse we know that

Again squaring

$$
(x+y+1)^{2}=\left(2 \sqrt{x^{2}+y^{2}}\right)^{2}
$$

$$
x^{2}+y^{2}+1+2 x y+2 y+2 x=4\left(x^{2}+y^{2}\right)
$$

$$
4 x^{2}+4 y^{2}-x^{2}-y^{2}-1-2 x y-2 y-2 x=0
$$

$$
3 x^{2}+3 y^{2}-2 x y-2 x-2 y-1=0 \quad \text { required ellipse }
$$

Q.5: Prove that latusrectim of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{2 b^{2}}{a}$

Solution:

The given ellipse is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
From the figure, the points $\mathrm{A}(\mathrm{c}, \mathrm{h}) \& \mathrm{~B}(\mathrm{c},-\mathrm{h})$ lies on ellipse (1) therefore.
For A(c, h) equation (1) becomes
$\frac{\mathrm{c}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{h}^{2}}{\mathrm{~b}^{2}}=1$

$$
\begin{aligned}
& |\mathrm{PF}|+\left|\mathrm{PF}^{\prime}\right|=2 \mathrm{a} \\
& \sqrt{(x-0)^{2}+(y-0)^{2}}+\sqrt{(x-1)^{2}+(y-1)^{2}}=2 \\
& \sqrt{x^{2}+y^{2}}+\sqrt{(x-1)^{2}+(y-1)^{2}}=2 \\
& \sqrt{(x-1)^{2}+(y-1)^{2}}=2-\sqrt{x^{2}+y^{2}} \text { Squaring } \\
& (x-1)^{2}+(y-1)^{2}=4+\left(x^{2}+y^{2}\right)-4 \sqrt{x^{2}+y^{2}} \\
& x^{2}+1-2 x+y^{2}+1-2 y=4+x^{2}+y^{2}-4 \sqrt{x^{2}+y^{2}} \\
& -2 x-2 y-2=-4 \sqrt{x^{2}+y^{2}} \\
& x+y+1=2 \sqrt{x^{2}+y^{2}} \quad \text { (Dividing both sides by 2) }
\end{aligned}
$$

$$
\begin{align*}
& \frac{\mathrm{h}^{2}}{\mathrm{~b}^{2}}=1-\frac{\mathrm{c}^{2}}{\mathrm{a}^{2}} \\
& \frac{\mathrm{~h}^{2}}{\mathrm{~b}^{2}}=\frac{\mathrm{a}^{2}-\mathrm{c}^{2}}{\mathrm{a}^{2}} \tag{2}
\end{align*}
$$

For ellipse, we know that

$$
\begin{array}{lll}
\mathrm{c}^{2} & =\mathrm{a}^{2}-\mathrm{b}^{2} \\
\mathrm{~b}^{2} & =\mathrm{a}^{2}-\mathrm{c}^{2} \\
\frac{\mathrm{~h}^{2}}{\mathrm{~b}^{2}} & =\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}} & \text { Put in (2) } \\
\mathrm{h}^{2} & =\frac{\mathrm{b}^{4}}{\mathrm{a}^{2}} \quad \Rightarrow \quad h= \pm \frac{b^{2}}{\mathrm{a}}
\end{array}
$$

Points A \& B becomes

$$
\mathrm{A}\left(\mathrm{c}, \frac{\mathrm{~b}^{2}}{\mathrm{a}}\right) \text { and } \mathrm{B}\left(\mathrm{c},-\frac{\mathrm{b}^{2}}{\mathrm{a}}\right)
$$

Length of Latus rectum $A B=\sqrt{(c-c)^{2}+\left(\frac{-b^{2}}{a}-\frac{b^{2}}{a}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\left(\frac{-2 b^{2}}{a}\right)^{2}}=\sqrt{\frac{4 b^{4}}{a^{2}}} \\
& =\frac{2 b^{2}}{a} \text { Hence proved. }
\end{aligned}
$$

Q.6: The major axis of an ellipse in standard form lies along the x-axis and has length $4 \sqrt{2}$. The distance between the foci equals the length of minor axis. Write an equation of the ellipse.

Solution:

Since the major axis of the ellipse lies along x -axis so its equation is

$$
\begin{array}{ll}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 & \ldots \ldots . . \tag{1}\\
\text { By the given condition } & 2 a=4 \sqrt{2} \\
\Rightarrow \quad a=2 \sqrt{2}
\end{array}
$$

We know that
Distance between foci $=$ length of minor axis
$2 \mathrm{c}=2 \mathrm{~b}$
$\Rightarrow \quad c \quad=b$
Since for ellipse $c^{2}=a^{2}-b^{2}$
$b^{2}=a^{2}-b^{2}$

$$
\begin{aligned}
2 b^{2} & =a^{2} \\
\Rightarrow \quad b^{2} & =\frac{(2 \sqrt{2})^{2}}{2}=\frac{b^{2}=\frac{a^{2}}{2}}{\frac{8}{2}=4}
\end{aligned}
$$

Putting values of $\mathrm{a} \& \mathrm{~b}$ in (1)

$$
\frac{x^{2}}{8}+\frac{y^{2}}{4}=1 \quad \text { Required equation of ellipse }
$$

Q.7: An astroid has elliptic orbit with the sun at one focus. Its distance from the sun ranges from $\mathbf{1 7}$ million miles to $\mathbf{1 8 3}$ million miles. Write on equation of the orbit of the astroid.

Solution: (Lahore Board 2004)

From the figure we have

Greatest distance of astroid from the sun is $\mathrm{a}+\mathrm{c}=183$
And least distance of astroid from the sun is

$$
\begin{equation*}
a-c=17 \tag{2}
\end{equation*}
$$

Adding (1) \& (2)
$\mathrm{a}+\mathrm{c}=183$
$\underline{a-c}=17$
$2 \mathrm{a}=200$
$\mathrm{a}=100 \quad$ Put in (1)
$100+\mathrm{c}=183$
c $\quad=83$
For ellipse, we know that

$$
\Rightarrow \quad \begin{aligned}
& c^{2}=a^{2}-b^{2} \\
& b^{2}=(100)^{2}-(83)^{2} \\
& b^{2}=3111
\end{aligned} \quad b^{2}=a^{2}-c^{2}
$$

Required equation of the orbit of astroid is

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{x^{2}}{(100)^{2}}+\frac{y^{2}}{3111}=1 \\
& \frac{x^{2}}{10000}+\frac{y^{2}}{3111}=1
\end{aligned}
$$

Ans.

Q.8: An arch in the shape of semi ellipse is 90 m wide at the base and 30 m high at the center. At what distance from the center is the $\operatorname{arch} 20 \sqrt{2} \mathrm{~m}$ high?
Solution: (Lahore Board 2004)

Let the equation of the semi-elliptic are be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Since the arch is 90 m wide at the base
so $2 \mathrm{a}=90 \quad \Rightarrow \quad \mathrm{a}=45$
Since arch is 30 m high at the center, so
$\mathrm{b}=30, \quad$ putting $\mathrm{a} \& \mathrm{~b}$ in (1)
$\frac{x^{2}}{(45)^{2}}+\frac{y^{2}}{(30)^{2}}=1$
Let d be the required distance from the center when arch is $20 \sqrt{2} \mathrm{~m}$ high.
Putting $\mathrm{x}=\mathrm{d} \quad, \quad \mathrm{y}=20 \sqrt{2}$ in (2)
$\frac{d^{2}}{(45)^{2}}+\frac{(20 \sqrt{2})^{2}}{(30)^{2}}=1$
$\frac{\mathrm{d}^{2}}{2025}+\frac{800}{900}=1$
$\frac{\mathrm{d}^{2}}{2025}=1-\frac{800}{900}$
$\mathrm{d}^{2}=\frac{100}{900} \times 2025$
$d^{2}=\frac{(45)^{2}}{(3)^{2}}$
$\mathrm{d}=\frac{45}{3}=15$ meter
Q.9: The moon orbits the earth in an elliptic path with earth at one focus. The major and minor axes of the orbit are $768,806 \mathrm{~km} \mathrm{\&} \mathrm{767}$, respectively. Find the greatest and least distances in astronomy called apogee $\&$ perigee) of the moon from the earth.

Solution:

By the given conditions
$2 \mathrm{a}=768806 \quad \Rightarrow \quad \mathrm{a}=384403$

$2 \mathrm{~b}=767746=\mathrm{b}=383874$
Since $\sqrt{c^{2}}=\sqrt{a^{2}-b^{2}}$

$$
\begin{aligned}
& \mathrm{c}=\sqrt{(384403)^{2}-(383874)^{2}} \\
& \mathrm{c}=20179 \mathrm{~km}
\end{aligned}
$$

The greatest distance

$$
\begin{aligned}
\mathrm{a}+\mathrm{c} & =384403+20179 \\
& =404582 \mathrm{~km}
\end{aligned}
$$

The least distance

$$
\begin{aligned}
\mathrm{a}-\mathrm{c} & =384403-20179 \\
& =364224 \mathrm{~km}
\end{aligned}
$$

Hyperbola

Let $\mathrm{e}>1$ and F be a fixed point and L be line not containing F. Also let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point in the plane and $|\mathrm{PM}|$ be the perpendicular distance of P from L . The set of all the points $\mathrm{P}(\mathrm{x}, \mathrm{y})$ such that $\frac{|\mathrm{PF}|}{|\mathrm{PM}|}=\mathrm{e}>1$ is called hyperbola.

Key points about Hyperbola

(1) Equation (Standard form)

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

(2) Eccentricity $e^{2}=\frac{a^{2}+b^{2}}{a^{2}}$

$$
(a e)^{2}=a^{2}+b^{2} \Rightarrow c^{2}=a^{2}+b^{2}
$$

(3) Foci $(\pm \mathrm{ae}, 0)$
(4) Directrix $x= \pm \frac{a}{e}$
(5) Center $(0,0)$
(6) Vertices $(\pm \mathrm{a}, 0)$
(7) Covertices $(0, \pm b)$
(1) (Lahore Board 2009)

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

(2) Eccentricity $e^{2}=\frac{a^{2}+b^{2}}{a^{2}}$

$$
(\mathrm{ae})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}
$$

$$
c^{2}=a^{2}+b^{2}
$$

$$
\text { (3) Foci } \quad(0, \pm \mathrm{ae})
$$

(4) Directrix $y= \pm \frac{a}{e}$
(5) Center $(0,0)$
(6) Vertices $(0, \pm \mathrm{a})$
(7) Covertices $(\pm \mathrm{b}, 0)$

Length of latus rectum is $\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}$.
If center is not $(0,0)$ then equations become

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \quad \& \quad \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

EXERCISE 6.6

Q.1: Find an equation of the hyperbola with given data. Sketch the graph of each. (i) Center (0, 0) Focus $(6,0)$, Vertex $(4,0)$

Solution:

$$
\begin{aligned}
\text { Given } \begin{array}{rlrl}
(\mathrm{ae}, 0) & =(6,0) & , & \\
(\mathrm{c}, 0) & =(6,0) & =(4,0) \\
\mathrm{c} & =6 & & \mathrm{a}=4 \\
& & &
\end{array} \text { 俍 }
\end{aligned}
$$

