(IV) Circle

Equations of tangent in different forms
(i) Point form:

Equation of tangent to the circle at $\left(x_{1}, y_{1}\right)$ is $x_{1}+y_{y_{1}}=a^{2}$
(ii) Slope form:

Equation of tangent is terms of slope ' m ' is $y=m x \pm a \sqrt{1+m^{2}}$

$$
\left(\therefore \quad c^{2}=\mathrm{a}^{2}\left(1+\mathrm{m}^{2}\right)\right.
$$

Equations of Normal

(i) Parobola $y^{2}=4 a x$ is at $\left(x_{1}, y_{1}\right)$

$$
y-y_{1}=\frac{-y_{1}}{2 a}\left(x-x_{1}\right)
$$

(ii) Ellipse $\frac{\mathbf{x}^{2}}{\mathbf{a}^{2}}+\frac{\mathbf{y}^{2}}{\mathbf{b}^{2}}=1$
at $\left(x_{1}, y_{1}\right)$ is
$\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}$
(iii) Hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ at $\left(x_{1}, y_{1}\right)$ is

$$
\frac{\mathrm{xa}^{2}}{\mathrm{x}_{1}}+\frac{\mathrm{yb}}{\mathrm{y}_{1}}=\mathrm{a}^{2}+\mathrm{b}^{2}
$$

EXERCISE 6.7

Q.1: Find equations of tangent and normal to each of the following at the indicated point.
(i) $\mathbf{y}^{2}=4 \mathrm{ax}$ at $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$

Solution:

Equation of tangent at (at $\left.{ }^{2}, 2 a t\right)$ is
$\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$
$y(2 a t)=2 a\left(x+a t^{2}\right)$
2ayt $=2 a \mathrm{ax}+2 \mathrm{a}^{2} \mathrm{t}^{2}$
2ayt $=2 a\left(x+a^{2}\right)$
$\mathrm{yt} \quad=\mathrm{x}+\mathrm{at}^{2}$
And equation of normal at ($\mathrm{at}^{2}, 2 \mathrm{at}$) is
$\mathrm{y}-\mathrm{y}_{1}=\frac{-\mathrm{y}_{1}}{2 \mathrm{a}}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-2 a t=\frac{-2 a t}{2 a}\left(x-a t^{2}\right)$

$$
\begin{aligned}
& y-2 a t=-t x+a t^{3} \\
& t x+y-2 a t-a t^{3}=0
\end{aligned}
$$

(ii) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $(a \cos \theta, b \sin \theta)$

Solution:

Equation of tangent $\frac{x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$
$\frac{x(a \cos \theta)}{a^{2}}+\frac{y(b \sin \theta)}{b^{2}}=1$
$\frac{\mathrm{x}}{\mathrm{a}} \cos \theta+\frac{\mathrm{y}}{\mathrm{b}} \sin \theta=1$
and equation of normal
$\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}$
$\frac{a^{2} x}{a \cos \theta}-\frac{b^{2} y}{b \sin \theta}=a^{2}-b^{2}$
$\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2} \quad a x \sec \theta-b y \operatorname{cosec} \theta=a^{2}-b^{2}$
(iii) $\frac{\mathbf{x}^{2}}{\mathbf{a}^{2}}-\frac{\mathbf{y}^{2}}{\mathbf{b}^{2}}=1 \quad$ at $(a \sec \theta, b \tan \theta)$

Solution:

Equation of tangent

$\frac{x^{x}}{a^{2}}-\frac{\mathrm{yy}_{1}}{\mathrm{~b}^{2}}=1$
$\frac{\mathrm{x} \mathrm{a} \mathrm{\sec } \mathrm{\theta}}{\mathrm{a}^{2}}-\frac{\mathrm{yb} \tan \theta}{\mathrm{b}^{2}}=1$
$\frac{x}{a} \sec \theta-\frac{y}{b} \tan \theta=1$
And equation of normal
$\frac{x a^{2}}{x_{1}}+\frac{y b^{2}}{y_{1}}=a^{2}+b^{2}$
$\frac{x a^{2}}{a \sec \theta}+\frac{y b^{2}}{b \tan \theta}=a^{2}+b^{2}$
$\frac{x a}{\sec \theta}+\frac{y b}{\tan \theta}=a^{2}+b^{2}$
OR $\quad \mathrm{xa} \cos \theta+\mathrm{yb} \cot \theta=\mathrm{a}^{2}+\mathrm{b}^{2}$

Q.2: Write equation of the tangent to the given conic at the indicated point

(i) $3 \mathrm{x}^{2}=-16 y$ at the points whose ordinate is -3

Solution:

$$
\begin{align*}
& 3 x^{2}=-16 y \tag{1}\\
& \text { Put } y=-3 \text { in } \\
& 3 x^{2}=-16(-3) . .(1) \\
& 3 x^{2}=48 \quad \Rightarrow \quad x^{2}=16 \\
& \Rightarrow x= \pm 4
\end{align*}
$$

Hence points are
$(4,-3) \quad \&(-4,-3)$
Now diff. (1)w.r.t 'x'

$$
6 x=-16 \frac{d y}{d x}
$$

$$
\frac{6 x}{-16}=\frac{d y}{d x}
$$

$$
\frac{d y}{d x}=\frac{-3}{8} x
$$

$$
\mathrm{m}=\text { Slope }=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{(4,-3)}=\frac{-3}{8}(4)=\frac{-3}{2}
$$

$$
\text { Also } \quad \mathrm{m} \quad=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{(-4,-3)}=\frac{-3}{8}(4)=\frac{3}{2}
$$

$\therefore \quad$ Equation of tangent at $(4,-3)$ is
Equation of tangent at $(-4,-3)$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y+3=\frac{-3}{2}(x-4)$
$2 \mathrm{y}+6=-3 \mathrm{x}+12$
$3 \mathrm{x}+2 \mathrm{y}=6$
$3 \mathrm{x}+2 \mathrm{y}-6=0$

$y-y_{1}$	$=m\left(x-x_{1}\right)$
$y+3$	$=\quad \frac{+3}{2}(x+4)$
$2 y+6$	$=3 x+12$
$3 x-2 y$	$=-6$
$3 x-2 y+6$	$=0$

(ii) $3 x^{2}-7 y^{2}=20 \quad$ at points where $y=-1$.

Solution:

$$
\begin{align*}
& 3 x^{2}-7 y^{2} \quad=20 \quad \ldots \ldots \ldots(1) \tag{1}\\
& \text { Put } \quad y=-1 \quad \text { in (1) } \\
& 3 x^{2}-7(-1)^{2}=20 \\
& 3 x^{2}=20+7 \\
& 3 x^{2}=27 \quad \Rightarrow \quad x^{2}=9 \quad \Rightarrow \quad x= \pm 3
\end{align*}
$$

Thus the required points on the conic are $(3,-1) \&(-3,-1)$

Now diff (1) w.r.t. ' x ' we have

$$
\begin{aligned}
& 6 x-14 y \frac{d y}{d x}=0 \\
& 14 \frac{d y}{d x}=6 x \\
& \frac{d y}{d x}=\frac{6 x}{14 y}=\frac{3 x}{7 y}
\end{aligned}
$$

Now $m=$ Slope $=\left.\frac{d y}{d x}\right|_{(3,-1)}=\frac{9}{-7}$ Also $m=\left.\frac{d y}{d x}\right|_{(-3,-1)}=\frac{9}{7}$

Therefore equation of tangent at $(3,-1)$ is $\mathrm{y}-\mathrm{y}_{1}$

$$
=m\left(x-x_{1}\right)
$$

$y+1=\frac{-9}{7}(x-3)$
$7 \mathrm{y}+7 \quad=\quad-9 \mathrm{x}+27$
$9 \mathrm{x}+7 \mathrm{y}=20$ $9 x+7 y-20=0$

Equation of tangent at $(-3,-1)$

$$
y-y_{1} \quad=\quad m\left(x-x_{1}\right)
$$

$\mathrm{y}-\mathrm{y}_{1}$	$=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\mathrm{y}+1$	$=\frac{9}{7}(\mathrm{x}+3)$
$7 \mathrm{y}+7$	$=9 \mathrm{x}+27$
$9 \mathrm{x}-7 \mathrm{y}$	$=-20$
$9 \mathrm{x}-7 \mathrm{y}+20$	$=0$ Ans

$$
y+1=\frac{9}{7}(x+3)
$$

$$
7 y+7 \quad=\quad 9 x+27
$$

$$
9 x-7 y=-20
$$

$$
9 x-7 y+20=0 \text { Ans }
$$

(iii) $3 x^{2}-7 y^{2}+2 x-y-48=0$, at point where $x=4$

Solution:

$$
\begin{aligned}
& 3 x^{2}-7 y^{2}+2 x-y-48=0 \\
& \text { Put } x=4 \text { in (1) } \\
& 3(4)^{2}-7 y^{2}+2(4)-y-48=0 \\
& 48-7 y^{2}+8-y-48=0 . .(1) \\
& \Rightarrow \quad-7 y^{2}-y+8=0 \quad \Rightarrow \quad 7 y^{2}+y-8=0 \\
& 7 y^{2}+8 y-7 y-8=0 \\
& y(7 y+8)-1(7 y+8)=0 \\
& (7 y+8)(y-1)=0
\end{aligned}
$$

Either

$$
\begin{array}{lll}
7 \mathrm{y}+8=0 & , & \mathrm{y}-1=0 \\
\mathrm{y}=\frac{-8}{7}, & \mathrm{y}=1
\end{array}
$$

Therefore, required points on the conic are $\left(4, \frac{-8}{7}\right) \&(4,1)$
Now diff. (1) w.r.t. ' x ' $6 x-14 y \frac{d y}{d x}+2-\frac{d y}{d x}=0$

$$
(-14 y-1) \frac{d y}{d x}=-6 x-2
$$

$$
\begin{gathered}
\frac{d y}{d x}=\frac{6 x+2}{14 y+1} \\
m=\left.\frac{d y}{d x}\right|_{(4,1)}=\frac{6(4)+2}{14(1)+1}=\frac{26}{15} \quad \text { Also } m=\left.\frac{d y}{d x}\right|_{\left(4,-\frac{8}{7}\right)}=\frac{6(4)+2}{14\left(\frac{-8}{7}\right)+1}=\frac{26}{-15}
\end{gathered}
$$

Equation of tangent at $(4,1)$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\mathrm{y}-1=\frac{26}{15}(\mathrm{x}-4)$
$\begin{array}{lll}15 y-15 & = & 26 x-104 \\ 26 x-15 y-89 & = & 0 \quad \text { Ans }\end{array}$

Equation of tangent at $\left(4, \frac{-8}{7}\right)$ is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+\frac{8}{7}=\frac{-26}{15}(x-4) \\
& 105 y-120=-182 x+728 \\
& 182 x+105 y-608=0
\end{aligned}
$$

Ans

Q.3: Find equations of the tangents to each of the following through the given point

(i) $\mathrm{x}^{2}+\mathrm{y}^{2}=25, \quad$ through $(7,-1)$

Solution:

$$
x^{2}+y^{2}=25 \Rightarrow \quad r=5
$$

We know that condition of tangency for the circle is
$c^{2}=r^{2}\left(1+m^{2}\right)$
$c^{2}=25\left(1+m^{2}\right)$
$\Rightarrow \quad c= \pm 5 \sqrt{1+\mathrm{m}^{2}}$
Let the required equation of tangent be
$\mathrm{y}=\mathrm{mx}+\mathrm{c}$
Putting value of C in (1)
$y=m x \pm 5 \sqrt{1+\mathrm{m}^{2}}$

Since tangent line passes through point $(7,-1)$, therefore

$$
\begin{aligned}
& -1=7 \mathrm{~m} \pm 5 \sqrt{1+\mathrm{m}^{2}} \\
& \pm 5 \sqrt{1+\mathrm{m}^{2}}=7 \mathrm{~m}+1 \\
& 25\left(1+\mathrm{m}^{2}\right) \quad=(7 \mathrm{~m}+1)^{2} \quad \text { Squaring } \\
& 25+25 \mathrm{~m}^{2}=49 \mathrm{~m}^{2}+1+14 \mathrm{~m} \\
& -24 \mathrm{~m}^{2}-14 \mathrm{~m}+24 \quad=0 \\
& 12 \mathrm{~m}^{2}+7 \mathrm{~m}-12 \quad=0 \\
& 12 \mathrm{~m}^{2}+16 \mathrm{~m}-9 \mathrm{~m}-12=0 \\
& 4 \mathrm{~m}(3 \mathrm{~m}+4)-3(3 \mathrm{~m}+4) \\
& (3 \mathrm{~m}+4)(4 \mathrm{~m}-3) \quad 0 \\
& \mathrm{~m}=\frac{-4}{3} \quad \mathrm{~m}= \\
& =0
\end{aligned}
$$

with $m=\frac{-4}{3}$
(2) becomes

$$
\begin{aligned}
y & =-\frac{4}{3} x \pm 5 \sqrt{1+\frac{16}{9}} \\
& =-\frac{4}{3} x \pm 5 \frac{5}{3} \\
3 y & =-4 x \pm 25 \\
4 x+3 y & \pm 25=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { with } \mathrm{m}=\frac{3}{4} \ldots \ldots \text { (2) becomes } \\
& \mathrm{y}=\frac{3 \mathrm{x}}{4} \pm 5 \sqrt{1+\frac{9}{16}} \\
& \quad=\frac{3 \mathrm{x}}{4} \pm \frac{25}{4} \\
& 4 \mathrm{y}=3 \mathrm{x} \pm 25 \\
& 3 \mathrm{x}-4 \mathrm{y} \pm 25=0
\end{aligned}
$$

(ii) $\mathrm{y}^{2}=12 \mathrm{x} \quad$ through $(1,4)$

Solution:

$$
y^{2}=12 x
$$

As standard form is

$$
\begin{aligned}
& y^{2}=4 \mathrm{ax} \\
& 4 \mathrm{a}=12 \quad \Rightarrow \quad \mathrm{a}=3
\end{aligned}
$$

Let $y=m x+c \ldots$. (1) be the required equation of tangent. For Parabola we know that condition of tangency is $\mathrm{c}=\frac{\mathrm{a}}{\mathrm{m}}=\frac{3}{\mathrm{~m}}$ put in (1)

$$
\begin{equation*}
y=m x+\frac{3}{m} \tag{2}
\end{equation*}
$$

Since tangent line passes through point $(1,4)$
So (2) becomes
$4=\mathrm{m}+\frac{3}{\mathrm{~m}} \Rightarrow 4 \mathrm{~m}=\mathrm{m}^{2}+3$
$m^{2}-4 m+3=0$
$(\mathrm{m}-1)(\mathrm{m}-3)=0$
$\mathrm{m}=1 \quad, \quad \mathrm{~m}=3 \quad$ Put in (1)
$y=x+3 \quad \& \quad y=3 x+\frac{3}{m}$
$x-y+3=0 \quad y=3 x+\frac{3}{3}$
$y=3 x+1$
$3 \mathrm{x}-\mathrm{y}+1=0 \quad$ Ans
(iii) $x^{2}-2 y^{2}=2$ through $(1,-2)$

Solution:

$$
\begin{aligned}
x^{2}-2 y^{2} & =2 \\
\frac{x^{2}}{2}-\frac{y^{2}}{1} & =1 \\
\Rightarrow \quad a^{2}=2 & , \quad b^{2}=1
\end{aligned}
$$

For hyperbola, we know that condition of tangent is

$$
\mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}
$$

$\Rightarrow \quad c^{2}=2 m^{2}-1 \quad \Rightarrow \quad c= \pm \sqrt{2 m^{2}-1}$
Let $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ be tangent to the given hyperbola then $\mathrm{y}=\mathrm{mx} \pm \sqrt{2 \mathrm{~m}^{2}-1}$

$$
\begin{equation*}
\text { Since (1) passes through }(1,-2)(1) \text { becomes } \tag{1}
\end{equation*}
$$

$-2=m \pm \sqrt{2 m^{2}-1}$
$-2-m= \pm \sqrt{2 m^{2}-1} \quad$ Squaring
$4+m^{2}+4 m=2 m^{2}-1$
$2 \mathrm{~m}^{2}-1-\mathrm{m}^{2}-4 \mathrm{~m}-4=0$
$m^{2}-4 m-5=0$
$\Rightarrow \quad(m-5)(m+1)=0$
$\Rightarrow \quad m=5, m=-1$
Putting values of m in (1) we get

$$
\begin{array}{lll}
y=5 x \pm \sqrt{2(25)-1} & , & y \\
y=5 x \pm \sqrt{49} & & =-x \pm \sqrt{2-1} \\
y=5 x \pm 7 & & \\
y=0 & & \\
5 x-y \pm 7=0 \quad \text { Ans }
\end{array}, \quad y+x \pm 1=0
$$

Q.4: Find equations of normal to the Parabola $y^{2}=8 x$, which are parallel to the line $2 \mathrm{x}+3 \mathrm{y}=10$.

Solution:

$y^{2}=8 x$

$$
\begin{equation*}
1 / 2=3 x+3 y=10 \tag{1}
\end{equation*}
$$

Diff. (1) w.r.t. ' x '

$$
\begin{equation*}
\mathrm{m}_{2}=\text { Slope of line } \tag{2}
\end{equation*}
$$

$$
\begin{array}{rlrl}
2 y \frac{d y}{d x} & =8 & & =\frac{-\operatorname{coeff} \text { of } x}{\operatorname{coeff} \text { of } y} \\
\frac{d y}{d x} & =\frac{8}{2 y}=\frac{4}{y} & =-\frac{2}{3}
\end{array}
$$

$$
\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{4}{\mathrm{y}}
$$

$$
\mathrm{m}_{1}=\text { Slope of normal }=\frac{-\mathrm{y}}{4}
$$

Since normal and given line are Parallel

$$
\begin{aligned}
\mathrm{m}_{1} & =\mathrm{m}_{2} \\
\frac{-\mathrm{y}}{4} & =\frac{-2}{3} \quad \Rightarrow \quad y=\frac{8}{3} \quad \text { Put in }(1) \\
\left(\frac{8}{3}\right)^{2} & =8 x
\end{aligned}
$$

$$
\frac{64}{9 \times 8}=x \quad \Rightarrow \quad x=\frac{8}{9}
$$

Required point $\quad\left(\frac{8}{9}, \frac{8}{3}\right)$
with $\mathrm{y}=\frac{8}{3}, \mathrm{~m}_{1}$ become

$$
\mathrm{m}_{1}=-\frac{8}{3} \times \frac{1}{4}=\frac{-2}{3}
$$

Required equation of normal at $\left(\frac{8}{9}, \frac{8}{3}\right)$ is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-\frac{8}{3}=\frac{-2}{3}\left(x-\frac{8}{9}\right) \\
& 3 y-8=-2\left(\frac{9 x-8}{9}\right) \\
& 27 y-72=-18 x+16 \\
& 18 x+27 y-88=0
\end{aligned}
$$

Q.5: Find equations of tangents to the ellipse $\frac{x^{2}}{4}+y^{2}=1$, which are parallel to the line $2 x-4 y+5=0$.
Solution:

$$
\begin{aligned}
& \frac{x^{2}}{4}+\frac{y^{2}}{1}=1 \\
\Rightarrow & a^{2}=4, b^{2}=1
\end{aligned} \quad m=\frac{-\operatorname{coeff} \text { of } x}{\operatorname{coeff} \text { of } y}=\frac{-2}{-4}=\frac{1}{2}
$$

We know that condition of tangent for ellipse is

$$
\begin{aligned}
& c^{2}=a^{2} m^{2}+b^{2} \\
& c^{2}=4 m^{2}+1 \\
& c= \pm \sqrt{4 m^{2}+1}
\end{aligned}
$$

Since tangent is parallel to line $2 x-4 y+5=0$
$\therefore \quad$ Slope is also $\mathrm{m}=\frac{1}{2}$

$$
c \quad= \pm \sqrt{4 \frac{1}{4}+1}= \pm \sqrt{2}
$$

Let the equation of required tangent by

$$
y \quad=m x+c
$$

$$
\begin{array}{cl}
y & =\frac{1}{2} x \pm \sqrt{2} \\
2 y & =x \pm 2 \sqrt{2} \\
x-2 y \pm 2 \sqrt{2} & =0 \quad \text { Ans }
\end{array}
$$

Q.6: Find equations of the tangents to the conics $9 x^{2}-4 y^{2}=36$ Parallel to $5 \mathrm{x}-2 \mathrm{y}+7=0$.

Solution:

$$
\begin{aligned}
& 9 x^{2}-4 y^{2}=36 \\
& \frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \quad \quad \text { (Dividing by } 36 \text {) } \\
& \Rightarrow \quad a^{2}=4 \quad, \quad b^{2}=9 \\
& 5 x-2 y+7 \quad=0 \\
& m=\text { slope of line }=\frac{5}{2}
\end{aligned}
$$

For hyperbola, we know that
$c^{2}=a^{2} m^{2}-b^{2}$
$c^{2}=4 m^{2}-9$
Since tangent and given line are parallel so their slopes are same. Thus $m=\frac{5}{2}$
$c^{2}=4\left(\frac{25}{4}\right)-9 \quad c^{2}=16 \quad \Rightarrow \quad c= \pm 4$
Let $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ be the required equation of the tangent then $\mathrm{y}=\frac{5}{2} \mathrm{x} \pm 4$
$2 \mathrm{y}=5 \mathrm{x} \pm 8$
$5 \mathrm{x}-2 \mathrm{y} \pm 8=0 \quad$ Ans.
Q.7: Find equations of common tangents to the given conics.
(i) $x^{2}=80 y \quad \& \quad x^{2}+y^{2}=81$

Solution:

$x^{2}=80 y$

$$
\begin{equation*}
x^{2}+y^{2}=81 \tag{1}
\end{equation*}
$$

Let $y=m x+c$ (3) be the required common tangent. Let a be radius of circle then (2) becomes $\mathrm{a}^{2}=81$ Put in (1)

$$
\begin{aligned}
& x^{2}=80 \quad(m x+c) \\
& x^{2}-80 m x-80 c=0
\end{aligned}
$$

For equal roots, we know that Disc $=0$
$b^{2}-4 a c=0$
$(-80 \mathrm{~m})^{2}-4(1)(-80 \mathrm{c})=0$
$80\left(80 \mathrm{~m}^{2}+4 \mathrm{c}\right)=0$

$$
80 m^{2}+4 c \quad=0 \quad c=-20 m^{2}
$$

Condition of tangency for circle is $c^{2}=a^{2}\left(1+m^{2}\right)$

$$
\begin{align*}
& \left(-20 m^{2}\right)^{2}=81\left(1+\mathrm{m}^{2}\right) \tag{4}\\
& 400 \mathrm{~m}^{4}=81+81 \mathrm{~m}^{2} \\
& 400 \mathrm{~m}^{4}-81 \mathrm{~m}^{2}-81=0
\end{align*}
$$

By Quadratic Formula

$$
\begin{aligned}
\mathrm{m}^{2} & =\frac{-(-81) \pm \sqrt{(-81)^{2}-4(400)(-81)}}{2(400)} \\
& =\frac{81 \pm \sqrt{136161}}{800}=\frac{9}{16} \\
\mathrm{~m} & = \pm \frac{3}{4} \\
\therefore \quad \mathrm{c} & =-20\left(\frac{9}{16}\right)=\frac{-45}{4}
\end{aligned}
$$

Putting values of $\mathrm{m} \& \mathrm{c}$ in $\mathrm{y}=\mathrm{mx}+\mathrm{c}$

$$
\begin{aligned}
& y \quad= \pm \frac{3}{4} x-\frac{45}{4} \\
& 4 y \quad= \pm 3 x-45 \\
& \pm 3 x-4 y-45=0 \quad \text { Ans. }
\end{aligned}
$$

(ii) $y^{2}=16 x \quad \& \quad x^{2} \quad=2 y$

Solution:

$$
\begin{gathered}
y^{2}=16 x \\
y^{2}=4 a x \\
4 a=16 \\
a=4
\end{gathered}
$$

(1) $\quad x^{2}=2 y \quad \ldots$ (2)

We know that condition of tangency for Parabola is $c=\frac{a}{m}$

$$
\mathrm{c}=\frac{4}{\mathrm{~m}}
$$

Let $\mathrm{y}=\mathrm{mx}+\mathrm{c} \quad \ldots \ldots$. (3) be required tangent
then $y=m x+\frac{4}{m} \quad$ Putting value of y in (2)
$x^{2}=2\left(m x+\frac{4}{m}\right) \Rightarrow m^{2}=2 m^{2} x+8$
$m x^{2}-2 m^{2} x-8=0$
For equal roots, we know that Disc $=0$

$$
\begin{aligned}
& \text { i.e; } \mathrm{b}^{2}-4 \mathrm{ac}=0 \\
& \begin{array}{l}
\left(-2 \mathrm{~m}^{2}\right)^{2}-4(\mathrm{~m})(-8)=0 \\
4 \mathrm{~m}^{4}+32 \mathrm{~m}=0 \\
4 \mathrm{~m}\left(\mathrm{~m}^{3}+8\right)=0 \\
\mathrm{~m}=0 \quad, \quad \mathrm{~m}^{3}=-8 \quad, \quad \mathrm{~m}=-2
\end{array}
\end{aligned}
$$

Equation of tangent is

$$
\begin{aligned}
& y=m x+c \\
& y=-2 x+\frac{4}{-2} \\
& y=-2 x-2 \\
& 2 x+y+2=0 \quad \text { Ans. }
\end{aligned}
$$

Q.8: Find the points of intersection of the given conics.
(i)

$$
\frac{x^{2}}{18}+\frac{y^{2}}{8}=1 \quad \& \quad \frac{x^{2}}{3}-\frac{y^{2}}{3}=1
$$

Solution:

$$
\begin{aligned}
& \frac{x^{2}}{18}+\frac{y^{2}}{8}=1 \quad \& \quad \frac{x^{2}}{3}-\frac{y^{2}}{3}=1 \\
& 8 x^{2}+18 y^{2}=144 \\
& 4 x^{2}+9 y^{2}=72 \ldots . \text { (1) } \quad x^{2}-y^{2}=3 \\
& \text { Multiplying Eq. (2) by } 9 \text { \& add in (1) (2) } \\
& \begin{array}{l}
9 x^{2}-9 y^{2} \\
=27 \\
\frac{4 x^{2}+9 y^{2}}{13 x^{2}}=72 \\
=99
\end{array} \\
& \begin{array}{l}
x^{2}=\frac{99}{13} \quad \Rightarrow \quad x= \pm \sqrt{\frac{99}{13}}
\end{array}
\end{aligned}
$$

Put in (2)

$$
\begin{aligned}
& \frac{99}{13}-y^{2}=3 \\
& \frac{99}{13}-3=y^{2} \\
& \frac{99-39}{13}=y^{2} \\
& y^{2}=\frac{60}{13} \quad \Rightarrow \quad y= \pm \sqrt{\frac{60}{13}}
\end{aligned}
$$

Points of intersection are $\left(\pm \sqrt{\frac{99}{13}}, \pm \sqrt{\frac{60}{13}}\right) \quad$ Ans.
(ii) $x^{2}+y^{2}=8 \quad \& \quad x^{2}-y^{2}=1$

Solution:

$$
\begin{aligned}
& \mathrm{x}^{2}+\mathrm{y}^{2}=8 \ldots .(1) \quad \mathrm{x}^{2}-\mathrm{y}^{2}=1 \quad \ldots \text { (2) } \\
& \text { Adding (1) \& (2) } \\
& \mathrm{x}^{2}+\mathrm{y}^{2}=8 \\
& \underline{\mathrm{x}^{2}-\mathrm{y}^{2}=1} \\
& 2 \mathrm{x}^{2}=9 \quad \Rightarrow \quad \mathrm{x}^{2}=\frac{9}{2} \quad \Rightarrow \quad \mathrm{x}= \pm \frac{3}{\sqrt{2}}
\end{aligned}
$$

Put in (1) $\quad \frac{9}{2}+y^{2}=8$

$$
\begin{aligned}
& y^{2}=8-\frac{9}{2} \\
& y^{2}=\frac{16-9}{2}=\frac{7}{2} \\
& y= \pm \sqrt{\frac{7}{2}}
\end{aligned}
$$

Hence points of intersection are $\left(\pm \frac{3}{\sqrt{2}}, \pm \sqrt{\frac{7}{2}}\right)$ Ans

$$
\begin{align*}
3 x^{2}-4 y^{2} & =12 \tag{1}\\
3 y^{2}-2 x^{2} & =7 \tag{2}
\end{align*}
$$

Multiplying equation (1) by (2) \& (2) by 3 and adding

$$
6 x^{2}-8 y^{2}=24
$$

$$
-6 x^{2}+9 y^{2}=21
$$

$$
y^{2}=45 \quad \Rightarrow \quad y= \pm \sqrt{45}
$$

Put in (2)
$-2 x^{2}+3(45)=7$
$-2 x^{2}+135=7$

$$
135-7=2 x^{2}
$$

$$
128=2 x^{2}
$$

$$
x^{2}=64 \quad \Rightarrow \quad x= \pm 8
$$

Hence points of intersection are
$(\pm 8, \pm \sqrt{45})$ Ans.
(iv) $3 x^{2}+5 y^{2}=60$ and $9 x^{2}+y^{2}=124$

Solution:

$3 x^{2}+5 y^{2}=60$
$9 x^{2}+y^{2}=124$

Multiplying (1) by (3) \& Subtracting from (2)

$$
\begin{equation*}
9 x^{2}+y^{2}=124 \tag{1}
\end{equation*}
$$

$$
-9 x^{2} \pm 15 y^{2}=-180
$$

$$
-14 y^{2}=-56
$$

$$
y^{2}=4 \quad \Rightarrow \quad y= \pm 2
$$

Put in (1)

$$
\begin{aligned}
& 9 \mathrm{x}^{2}+4=124 \\
& 9 \mathrm{x}^{2}=120 \\
& \mathrm{x}^{2}=\frac{120}{9}=\frac{40}{3} \quad \mathrm{x} \quad= \pm \sqrt{\frac{40}{3}}
\end{aligned}
$$

Hence points of intersection are $\left(\pm \sqrt{\frac{40}{3}} \pm 2\right)$

EXERCISE 6.8

Q.1: Find an equation of each of the following with respect to new parallel axes obtained by shifting the origin to the indicated point.

Solution:

(i) $\mathrm{x}^{2}+16 \mathrm{y}-16=0 \ldots \ldots$. (1) $\mathrm{O}^{\prime}(0,1) \Rightarrow \mathrm{h}=0, \mathrm{k}=1$

We know that equations of transformation are

$$
\begin{array}{ll}
x=X+h & y=Y+k \\
x=X+0 \quad, & y=Y+1 \quad \text { Put in (1) } \\
X^{2}+16(Y+1)-16 & =0 \\
X^{2}+16 Y+16-16 & =0 \\
X^{2}+16 Y & =0 \quad \text { Ans }
\end{array}
$$

(ii) $4 x^{2}+y^{2}+16 x-10 y+37=0 \quad O^{\prime}(-2,5)$

Solution:

$$
4 x^{2}+y^{2}+16 x-10 y+37=0 \quad \ldots \ldots \ldots \text { (i) }, O^{\prime}(-2,5) \Rightarrow h=-2, k=5
$$

We know that equations of transformation are

