$\mathrm{X}^{2}-\mathrm{Y}^{2}+\sqrt{2} \mathrm{X}-7 \sqrt{2}-20 \quad=0 \quad$ Ans.
(iii) $5 \mathrm{x}^{2}-6 \mathrm{xy}+5 \mathrm{y}^{2}-8=0$

Solution:
$5 x^{2}-6 x y+5 y^{2}-8=0$
We know that for rotation of axes
$\mathrm{x}=\mathrm{X} \cos \theta-\mathrm{Y} \sin \theta \quad, \quad \mathrm{y} \quad=\quad \mathrm{X} \sin \theta+\mathrm{Y} \cos \theta \quad$ Put in (1)
$5(\mathrm{X} \cos \theta-\mathrm{Y} \sin \theta)^{2}-6(\mathrm{X} \cos \theta-\mathrm{Y} \sin \theta)(\mathrm{X} \sin \theta+\mathrm{Y} \cos \theta)+5(\mathrm{X} \sin \theta+$ $\mathrm{Y} \cos \theta)^{2}-8=0$
$5\left(\mathrm{X}^{2} \cos ^{2} \theta+\mathrm{Y}^{2} \sin ^{2} \theta-2 X Y \sin \theta \cos \theta\right)-6\left(\mathrm{X}^{2} \cos \theta \sin \theta+\mathrm{XY} \cos ^{2} \theta-\mathrm{XY}\right.$ $\left.\sin ^{2} \theta-Y^{2} \sin \theta \cos \theta\right)+5\left(X^{2} \sin ^{2} \theta+Y^{2} \cos ^{2} \theta+2 X Y \sin \theta \cos \theta\right)-8=0$
$5 \mathrm{X}^{2} \cos ^{2} \theta+5 \mathrm{Y}^{2} \sin ^{2} \theta-10 \mathrm{XY} \sin \theta \cos \theta-6 \mathrm{X}^{2} \cos \theta \sin \theta-6 \mathrm{XY} \cos ^{2} \theta+6 \mathrm{XY}$
$\sin ^{2} \theta+6 \mathrm{Y}^{2} \sin \theta \cos \theta+5 \mathrm{X}^{2} \sin ^{2} \theta+5 \mathrm{Y}^{2} \cos ^{2} \theta+10 \mathrm{XY} \sin \theta \cos \theta-8=0$
$\mathrm{X}^{2}\left(5 \cos ^{2} \theta-6 \cos \theta \sin \theta+5 \sin ^{2} \theta\right)+\mathrm{XY}\left(-10 \cos \theta \sin \theta-6 \cos ^{2} \theta+6 \sin ^{2} \theta\right.$ $+10 \sin \theta \cos \theta)+\mathrm{Y}^{2}\left(5 \sin ^{2} \theta+6 \sin \theta \cos \theta+5 \cos ^{2} \theta\right)-8=0$

To remove XY terms put
$-6 \cos ^{2} \theta+6 \sin ^{2} \theta=0$
$\cos ^{2} \theta=\sin ^{2} \theta \quad \Rightarrow \quad \tan ^{2} \theta=1$
$\tan \theta=1 \quad\left(\theta\right.$ is taken is $1^{\text {st }}$ Quadrant)
$\theta=45^{\circ} \quad$ Put in (2)
$\mathrm{X}^{2}\left(5\left(\cos 45^{\circ}\right)^{2}-6 \cos 45^{\circ} \sin 45^{\circ}+5\left(\sin 45^{\circ}\right)^{2}\right)+0+\mathrm{Y}^{2}\left(5\left(\sin 45^{\circ}\right)^{2}+6 \sin 45^{\circ}\right.$ $\left.\cos 45^{\circ}+5\left(\cos 45^{\circ}\right)^{2}\right)-8=0$

$$
\begin{array}{ll}
& X^{2}\left(5+\left(\frac{1}{\sqrt{2}}\right)^{2}-6 \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}+5\left(\frac{1}{\sqrt{2}}\right)^{2}\right)+\mathrm{Y}^{2}\left(5+\left(\frac{1}{\sqrt{2}}\right)^{2}+6 \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}+5\left(\frac{1}{\sqrt{2}}\right)^{2}\right) \\
& \mathrm{X}^{2}\left(\frac{5}{2}-\frac{6}{2}+\frac{5}{2}\right)+\mathrm{Y}^{2}\left(\frac{5}{2}+\frac{6}{2}+\frac{5}{2}\right)-8=0 \\
& 2 \mathrm{X}^{2}+8 \mathrm{Y}^{2}-8=0 \\
X^{2}+4 \mathrm{Y}^{2}-4=0 \quad \text { Ans }
\end{array}
$$

EXERCISE 6.9

Q.1: By rotation of axes, eliminates the xy-term in each of the following equations. Identify the conic \& find its elements.
(i)

$$
4 x^{2}-4 x y+y^{2}-6=0
$$

Solution:

$$
\begin{array}{ll}
4 x^{2}-4 x y+y^{2}-6=0 & (1) \tag{1}\\
\text { Here } a=4 & b=1
\end{array} \quad 2 h=-4
$$

$$
\begin{aligned}
& \tan 2 \theta=\frac{2 h}{a-b} \\
& \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{-4}{4-1}=\frac{-4}{3} \\
& \frac{2 \tan ^{2}}{1-\tan ^{2} \theta}=\frac{-4}{3} \\
& 6 \tan \theta=-4+4 \tan ^{2} \theta \\
& 4 \tan ^{2} \theta-6 \tan \theta-4=0 \Rightarrow 2 \tan ^{2} \theta-3 \tan \theta-2=0 \\
& 2 \tan ^{2} \theta-4 \tan \theta+\tan \theta-2=0 \\
& 2 \tan \theta(\tan \theta-2)+1(\tan \theta-2)=0 \\
& (\tan \theta-2)(2 \tan \theta+1)=0 \\
& \tan \theta=2, \tan \theta=\frac{-1}{2}(\text { is not admissible }) \\
& \sec \theta=\sqrt{1+\tan ^{2} \theta}=\frac{\sqrt{1+4}}{\cos }=\sqrt{5} \\
& \cos \theta=\frac{1}{\sqrt{5}} \sin \theta_{1-\cos ^{2} \theta}^{=}=\sqrt{1-\frac{1}{5}} \\
& =\sqrt{\frac{5-1}{5}}=\sqrt{\frac{4}{5}}
\end{aligned}
$$

Since equations of transformation are
$\left.\begin{array}{l}x=X \cos \theta-Y \sin \theta \\ y=X \sin \theta+Y \cos \theta\end{array}\right]$ putting values of $\sin \theta \& \cos \theta$ in above equations
$x=X \frac{1}{\sqrt{5}}-Y \frac{2}{\sqrt{5}}=\frac{X-2 Y}{\sqrt{5}}$
$\left.x=X \frac{2}{\sqrt{5}}-Y \frac{1}{\sqrt{5}}=\frac{2 X+Y}{\sqrt{5}}\right]$
Using (2) in (1)

$$
\begin{aligned}
& 4\left(\frac{X-2 Y}{\sqrt{5}}\right)^{2}-4\left(\frac{X-2 Y}{\sqrt{5}}\right)\left(\frac{2 X+Y}{\sqrt{5}}\right)+\left(\frac{2 X+Y}{\sqrt{5}}\right)^{2}-6=0 \\
& 4\left(\frac{X^{2}+4 Y^{2}-4 X Y}{5}\right)-4\left(\frac{2 X^{2}+X Y-4 X Y-2 Y^{2}}{5}\right)+\left(\frac{4 X^{2}+Y^{2}+4 X Y}{5}\right)-6=0 \\
& 4 X^{2}+16 Y^{2}-16 X Y-8 X^{2}-4 X Y+16 X Y+8 Y^{2}+4 X^{2}+Y^{2}+4 X Y-30=0 \\
& 25 Y^{2}-30 \quad=0 \\
& 25 Y^{2}=30 \\
& Y^{2}=\frac{30}{25} \quad \Rightarrow \quad Y^{2}=\frac{6}{5}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad Y \quad= \pm \sqrt{\frac{6}{5}} \rightarrow \tag{3}
\end{equation*}
$$

From (2) we have $X-2 Y=\sqrt{5} x \ldots \ldots$ (4) $\quad 2 X+Y=\sqrt{5} y$
Multiply eq. (4) by $2 \&$ subtract from 5

$$
\begin{align*}
2 \mathrm{X}+\mathrm{Y} & =\sqrt{5} \mathrm{y} \\
-2 \mathrm{X} \mp 4 \mathrm{Y} & =-2 \sqrt{5} \mathrm{x} \\
\hline 5 \mathrm{Y} & =\sqrt{5} \mathrm{y}-2 \sqrt{5} \mathrm{x} \\
5 \mathrm{Y} & =\sqrt{5}(\mathrm{y}-2 \mathrm{x}) \\
\mathrm{Y} & =-\frac{\sqrt{5}}{5}(2 \mathrm{x}-\mathrm{y}) \rightarrow \tag{6}
\end{align*}
$$

Using (3) in 6
(ii) $\quad x^{2}-2 x y+y^{2}-8 x-8 y \quad=0$

Solution:

$$
\begin{aligned}
& \text { Here } \mathrm{a}=1,2 \mathrm{~h}=-2 \mathrm{C}, \mathrm{~b}=1 \\
& \tan 2 \theta=\frac{2 \mathrm{~h}}{\mathrm{a}-\mathrm{b}}=\frac{-2}{1-1}=\frac{-2}{0}=\infty \\
& \tan 2 \theta=\infty \\
& 2 \theta=\tan ^{-1} \infty=90^{\circ} \\
& \theta=45^{\circ}
\end{aligned}
$$

Equations of transformation are

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}=\frac{\mathrm{X}}{\sqrt{2}}-\frac{\mathrm{Y}}{\sqrt{2}}=\frac{\mathrm{X}-\mathrm{Y}}{\sqrt{2}} \\
& \mathrm{y}=\mathrm{X} \sin \theta+\mathrm{Y} \operatorname{y} \cos \theta \Rightarrow \mathrm{y} \theta \quad \mathrm{y}=\mathrm{x}=\mathrm{X} \cos 45^{\circ}-\mathrm{Y} \sin 45^{\circ} \\
& \mathrm{y}=\frac{\mathrm{X}}{\sqrt{2}}+\frac{Y}{\sqrt{2}}=\frac{\mathrm{X}+\mathrm{Y}}{\sqrt{2}} \\
& U \operatorname{lin} \cos 45^{\circ} \\
& U(2) \text { in (1) }
\end{aligned}
$$

$$
\begin{gathered}
\left(\frac{X-Y}{\sqrt{2}}\right)^{2}-2\left(\frac{X-Y}{\sqrt{2}}\right)\left(\frac{X+Y}{\sqrt{2}}\right)+\left(\frac{X+Y}{\sqrt{2}}\right)^{2}-8\left(\frac{X-Y}{\sqrt{2}}\right)-8\left(\frac{X+Y}{\sqrt{2}}\right)=0 \\
\frac{X^{2}+Y^{2}-2 X Y}{2}-\frac{2}{2}\left(X^{2}-Y^{2}\right)+\frac{X^{2}+Y^{2}+2 X Y}{2}-\frac{8}{\sqrt{2}}(X-Y)-\frac{8}{\sqrt{2}}(X+Y)=0 \\
X^{2}+Y^{2}-2 X Y-2\left(X^{2}-Y^{2}\right)+X^{2}+Y^{2}+2 X Y-8 \sqrt{2}(X-Y)-8 \sqrt{2}(X+Y)=0 \\
X^{2}+Y^{2}-2 X Y-2 X^{2}+2 Y^{2}+X^{2}+Y^{2}+2 X Y-8 \sqrt{2} X+8 \sqrt{2} Y-8 \sqrt{2} X-8 \sqrt{2} Y=0 \\
4 Y^{2}-16 \sqrt{2} X=0 \\
Y^{2}-4 \sqrt{2} X=0 \quad \text { which represents a Parabola }
\end{gathered}
$$

To solve (2) for values of X \& Y

$$
\begin{align*}
& \mathrm{x}=\frac{\mathrm{X}-\mathrm{Y}}{\sqrt{2}} \Rightarrow \sqrt{2} \mathrm{x}=\mathrm{X}-\mathrm{Y} \rightarrow(3) \\
& \mathrm{y}=\frac{\mathrm{X}+\mathrm{Y}}{\sqrt{2}} \Rightarrow \sqrt{2} \mathrm{y}=\mathrm{X}+\mathrm{Y} \quad \rightarrow \quad(4) \tag{4}
\end{align*}
$$

Adding (3) \& (4)

$$
\begin{aligned}
& \sqrt{2}(x+y)=2 X \\
& X=\frac{\sqrt{2}}{2}(x+y)
\end{aligned} \Rightarrow X=\frac{1}{\sqrt{2}}(x+y)
$$

Subtracting (3) \& (4)

$$
\begin{array}{rll}
\sqrt{2} x & =X-Y \\
-\sqrt{2} y & = & -X \pm Y \\
\sqrt{2}(x-y) & = & -2 Y \\
Y & =\frac{\sqrt{2}}{2}(x-y) \\
Y & =\frac{-1}{\sqrt{2}}(x-y)
\end{array}
$$

For vertex of Parabola, put $\mathrm{X}=0 \quad, \quad \mathrm{Y}=0$

$$
\begin{aligned}
& 0 \quad=\frac{1}{\sqrt{2}}(x+y) \quad 0 \quad=\frac{-1}{\sqrt{2}}(x-y) \\
& \Rightarrow x+y=0 \quad \Rightarrow \quad=\quad x-y=0 \\
& x+y=0 \quad x+y=0 \\
& \text { Adding } x-y=0 \quad \text { Subtract }-x \mp y=0 \\
& 2 x=0 \quad \Rightarrow \quad x=0 \quad 2 y \quad 0 \quad y=0 \\
& \text { Vertex }=(0,0)
\end{aligned}
$$

$$
\text { Axis of Parabola is } \quad \mathrm{Y}=0
$$

$$
\begin{aligned}
\frac{-1}{\sqrt{2}}(x-y) & =0 \\
x-y & =0 \quad \Rightarrow \quad x=y
\end{aligned}
$$

Since

$$
Y^{2}=4 \sqrt{2} X
$$

As standard form is

$$
\begin{aligned}
& \mathrm{y}^{2}=4 \mathrm{aX} \\
& 4 \mathrm{a}=4 \sqrt{2} \\
& \mathrm{a}=\sqrt{2}
\end{aligned}
$$

Focus of Parabola is $(0,0)$

$$
\begin{aligned}
& (\mathrm{X}, \mathrm{Y})=(\sqrt{2}, 0) \\
& {\left[\frac{1}{\sqrt{2}}(\mathrm{x}+\mathrm{y}), \frac{1}{\sqrt{2}}(\mathrm{x}-\mathrm{y})\right]=(\sqrt{2}, 0)} \\
& \frac{1}{\sqrt{2}}(\mathrm{x}+\mathrm{y})=\sqrt{2} \\
& \mathrm{x}+\mathrm{y}=2 \\
& \text { Solving above equations } \\
& \mathrm{x}+\mathrm{y}=2 \\
& \mathrm{x}-\mathrm{y}=2 \\
& 2 \mathrm{x}=2
\end{aligned}
$$

Focus $(1,1) \quad$ Ans
(iii) $x^{2}+2 x y+y^{2}+2 \sqrt{2} x-2 \sqrt{2} y+2=0$

Solution:

$$
\begin{align*}
& x^{2}+2 x y+y^{2}+2 \sqrt{2} x-2 \sqrt{2} y+2=0 \tag{1}\\
& a=1 \quad \& \quad b=1 \quad \Rightarrow \quad a=b, \quad \text { (1) } \\
& \tan 2 \theta \quad=\frac{2 h}{a-b} \\
& \tan 2 \theta \quad=\frac{2}{0} \quad=\quad \infty
\end{align*}
$$

$2 \theta=90^{\circ} \Rightarrow \theta=45^{\circ}$
Now equations of transformation are
$\mathrm{x}=\mathrm{X} \cos \theta-\mathrm{Y} \sin \theta=\mathrm{X} \cos 45^{\circ}-\mathrm{Y} \sin 45^{\circ}$

$$
\begin{aligned}
x & =\frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}}=\frac{X-Y}{\sqrt{2}} \\
y & =X \sin \theta+Y \cos \theta \\
y & =X \sin 45^{\circ}+Y \cos 45^{\circ} \\
y & =\frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}=\frac{X+Y}{\sqrt{2}} \\
x & \left.=\frac{X-Y}{\sqrt{2}} \quad, \quad y=\frac{X+Y}{\sqrt{2}}\right] \quad \rightarrow \quad(2)
\end{aligned}
$$

Using (2) in (1)

$$
\begin{align*}
& \left(\frac{X-Y}{\sqrt{2}}\right)^{2}+2\left(\frac{X-Y}{\sqrt{2}}\right)\left(\frac{X+Y}{\sqrt{2}}\right)+\left(\frac{X+Y}{\sqrt{2}}\right)^{2}+2 \sqrt{2}\left(\frac{X-Y}{\sqrt{2}}\right)-2 \sqrt{2}\left(\frac{X+Y}{\sqrt{2}}\right)+2=0 \\
& \frac{\mathrm{X}^{2}+\mathrm{Y}^{2}-2 \mathrm{XY}}{2}+\frac{2}{2}\left(\mathrm{X}^{2}-\mathrm{Y}^{2}\right)+\frac{\mathrm{X}^{2}+\mathrm{Y}^{2}+2 \mathrm{XY}}{2}+2(\mathrm{X}-\mathrm{Y})-2(\mathrm{X}+\mathrm{Y})+2=0 \\
& \mathrm{X}^{2}+\mathrm{Y}^{2}-2 \mathrm{XY}+2 \mathrm{X}^{2}-2 \mathrm{Y}^{2}+\mathrm{X}^{2}+\mathrm{Y}^{2}+2 \mathrm{XY}+4 \mathrm{X}-4 \mathrm{Y}-4 \mathrm{X}-4 \mathrm{Y}+4=0 \\
& 4 X^{2}-8 Y+4=0 \quad \Rightarrow \quad X^{2}-2 Y+1=0 \\
& \mathrm{X}^{2}=2 \mathrm{Y}-1 \quad \Rightarrow \quad \mathrm{X}^{2}=2(\mathrm{Y}-1) \rightarrow \tag{3}
\end{align*}
$$

Which represents a Parabola
Now, solve (2) for X \& Y

$$
\begin{aligned}
& X+Y=\sqrt{2} y=3-Y=\sqrt{2} y
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Y}=\frac{-1}{\sqrt{2}}(\mathrm{x}-\mathrm{y}) \\
& X=\frac{\sqrt{2}}{2}(x+y) \quad \Rightarrow \quad X \quad=\frac{1}{\sqrt{2}}(x+y)
\end{aligned}
$$

For vertex of Parabola

$$
\begin{array}{cc}
\text { Put } \mathrm{X}=0 & , \quad \mathrm{Y}=0 \\
\frac{1}{\sqrt{2}}(\mathrm{x}+\mathrm{y})=0 & -\frac{1}{\sqrt{2}}(\mathrm{x}-\mathrm{y})=0 \\
\mathrm{x}+\mathrm{y}=0 & \mathrm{x}-\mathrm{y}=0
\end{array}
$$

$$
\begin{aligned}
& x+y=0 \quad x+y=0 \\
& \begin{array}{ll}
\mathrm{x}-\mathrm{y} & =0 \\
\hline 2 \mathrm{x} & =0
\end{array} \quad \mathrm{x}=0 \quad 2 \mathrm{y}=0 \mathrm{x}=\mathrm{y}=-0 \mathrm{y}=0
\end{aligned}
$$

Vertex $\quad=\quad(0,0)$

Axis of Parabola

$$
\begin{aligned}
& \mathrm{X} \quad=0 \\
& \frac{1}{\sqrt{2}}(\mathrm{x}+\mathrm{y})=0 \quad \Rightarrow \quad x+y=0
\end{aligned}
$$

Focus

$$
\begin{aligned}
& (\mathrm{X}, \mathrm{Y})=(0, \mathrm{a}) \\
& \therefore \mathrm{X}^{2}=2\left(\mathrm{Y}-\frac{1}{2}\right) \\
& x^{2}=4 a y \\
& \Rightarrow \quad 4 a=2 a=\frac{1}{2} \\
& \left(\frac{1}{\sqrt{2}}(x+y), \frac{-1}{\sqrt{2}}(x-y)\right)=\left(0,-\frac{1}{2}\right) \\
& \frac{1}{\sqrt{2}}(x+y)=0 \quad \frac{-1}{\sqrt{2}}(x-y)=\frac{1}{2} \\
& \begin{array}{l}
(x+y)=0 \\
x+y=0 \\
x-y=-\sqrt{2}
\end{array} \\
& 2 x=-\sqrt{2} \Rightarrow x=\frac{-1}{\sqrt{2}} \quad \begin{array}{c}
\frac{-1-\sqrt{2} y}{\sqrt{2}}=-2 \\
-1-\sqrt{2}=-2
\end{array} \\
& -1+2=\sqrt{2} y \\
& 1=\sqrt{2} y \quad \Rightarrow \quad y=\frac{1}{\sqrt{2}} \\
& \text { Focus }=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text { Ans. }
\end{aligned}
$$

(iv) $x^{2}+x y+y^{2}-4=0$

Solution:

$$
\begin{array}{llll}
\text { Here } & \mathrm{a}=1, & \mathrm{~b}=1, & 2 \mathrm{~h}=1 \\
\text { If } & \mathrm{a}=\mathrm{b} & \theta=45^{\circ} & \text { (always) }
\end{array}
$$

New equations of transformation are

$$
\begin{align*}
& \mathrm{x}=\mathrm{X} \cos \theta-Y \sin \theta=X \cos 45^{\circ}-Y \sin 45^{\circ}=\frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}} \tag{2}\\
& \mathrm{y}=\mathrm{X} \sin \theta+\mathrm{Y} \cos \theta=\mathrm{Y} \sin 45^{\circ}+Y \cos 45^{\circ}=\frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}
\end{align*}
$$

Putting in (1)

$$
\begin{aligned}
& \left(\frac{X-Y}{\sqrt{2}}\right)^{2}+\left(\frac{X-Y}{\sqrt{2}}\right)\left(\frac{X+Y}{\sqrt{2}}\right)+\left(\frac{X+Y}{\sqrt{2}}\right)^{2}-4=0 \\
& \frac{X^{2}+Y^{2}-2 X Y}{2}+\frac{X^{2}-Y^{2}}{2}+\frac{X^{2}+Y^{2}-2 X Y}{2}-4=0 \\
& X^{2}+Y^{2}-2 X Y+X^{2}-Y^{2}+X^{2}+Y^{2}+2 X Y-8=0 \\
& 3 X^{2}+Y^{2}=8 \\
& \frac{3 X^{2}}{8}+\frac{Y^{2}}{8}=1 \quad \Rightarrow \frac{X^{2}}{\frac{8}{3}}+\frac{Y^{2}}{8}=3
\end{aligned}
$$

$$
\begin{array}{llc}
& \sqrt{2} \mathrm{x}=\mathrm{X}-\mathrm{Y} & \sqrt{2} \mathrm{x}=\mathrm{X}-\mathrm{Y} \\
\text { Adding } & \sqrt{2} \mathrm{y}=\mathrm{X}+\mathrm{Y} & \\
\cline { 1 - 2 } \sqrt{2}(\mathrm{x}+\mathrm{y})=2 \mathrm{X} & & -\sqrt{2} \mathrm{y}=-\mathrm{X} \pm \mathrm{Y} \\
\hline \mathrm{X}=\frac{1}{2}(\mathrm{x}-\mathrm{y})=-2 \mathrm{Y} \\
\sqrt{2}(\mathrm{x}+\mathrm{y}) & & \mathrm{Y}=-\frac{1}{\sqrt{2}}(\mathrm{x}-\mathrm{y})
\end{array}
$$

For center put $\quad \mathrm{X}=0 \quad, \quad \mathrm{Y}=0$

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(x+y)=0 \\
& \frac{-1}{\sqrt{2}}(x-y)=0 \\
& (x+y)=0 \quad, \quad x-y=0 \\
& x+y=0 \quad x+y=0 \\
& \text { Adding } \mathrm{x}-\mathrm{y}=0 \quad-\mathrm{x} \mp \mathrm{y}=-0 \\
& 2 \mathrm{x}=0 \Rightarrow 2 \mathrm{y}=0 \quad \mathrm{x}=0 \quad \mathrm{y}=0
\end{aligned}
$$

Required center ($\mathbf{0}, \mathbf{0}$)

From (3) we have $\mathrm{a}^{2}=8$ (length of major axis)

$$
\begin{aligned}
& \mathrm{b}^{2}=\frac{8}{3} \quad \text { (Length of minor axis) } \\
\therefore & \mathrm{e}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{8-\frac{8}{3}}{8}=\frac{24-8}{3} \times \frac{1}{8}=\frac{16}{3} \times \frac{1}{8}=\frac{2}{3} \\
\Rightarrow & \mathrm{e}=\sqrt{\frac{2}{3}}
\end{aligned}
$$

Coordinates of foci

$$
\begin{aligned}
& =\quad(0, \pm \mathrm{ae}) \\
& (X, Y)=\left(0, \pm 2 \sqrt{2} \sqrt{\frac{2}{3}}\right) \\
& \left(\frac{1}{\sqrt{2}}(x+y), \frac{-1}{\sqrt{2}}(x-y)\right)=\left(0, \pm \frac{4}{\sqrt{3}}\right) \\
& \frac{1}{\sqrt{2}}(x+y)=0 \quad, \quad \frac{-1}{\sqrt{2}}(x-y)= \pm \frac{4}{\sqrt{3}} \\
& \Rightarrow \quad x+y=0 \quad x-y= \pm \frac{4 \sqrt{2}}{\sqrt{3}} \\
& \text { Now } \\
& \mathrm{x}+\mathrm{y}=0 \\
& \text { Adding } \\
& x-y= \pm \frac{4 \sqrt{2}}{\sqrt{3}},-3=1011000 \\
& 2 x= \pm \frac{4 \sqrt{2}}{\sqrt{3}} \Rightarrow x= \pm \frac{2 \sqrt{2}}{\sqrt{3}} y= \pm \frac{2 \sqrt{2}}{\sqrt{3}}
\end{aligned}
$$

Coordinates of foci are $\quad\left(\pm \frac{2 \sqrt{2}}{\sqrt{3}}, \pm \frac{2 \sqrt{2}}{\sqrt{3}}\right) \quad$ Ans.
Vertices of ellipse are $(0, \pm$ a)
$(\mathrm{X}, \mathrm{Y})=(0, \pm 2 \sqrt{2})$
$\frac{1}{\sqrt{2}}(x-y)=0 \quad \frac{-1}{\sqrt{2}}(x+y)= \pm 2 \sqrt{2}$
$\Rightarrow \quad x-y=0$
$x+y= \pm 4$
$\mathrm{x}-\mathrm{y}=0$
$x+y= \pm 4$
$2 \mathrm{x}= \pm 4 \quad \Rightarrow \quad \mathrm{x}= \pm 2$
$\mathrm{y} \quad= \pm 2$
Required vertices are ($\pm 2, \pm 2$)
For equation of major axis Put $\mathrm{Y}=0$
$\frac{-1}{\sqrt{2}}(x+y)=0 \quad \Rightarrow \quad x+y=0$
For equation of minor axis Put $X=0$
$\frac{1}{\sqrt{2}}(x-y)=0 \quad \Rightarrow \quad x-y=0$
(v) $7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0$

Solution:

$$
\begin{align*}
& 7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0 \quad \begin{array}{l}
\ldots . \\
a=7 \quad, \quad 2 h=-6 \sqrt{3} \\
\tan 2 \theta=\frac{2 h}{a-b} \\
\tan 2 \theta=\frac{-6 \sqrt{3}}{7-13}=\frac{-6 \sqrt{3}}{-6} \\
\tan 2 \theta=\sqrt{3} \\
\theta=30^{\circ}
\end{array} \quad \Rightarrow 13 \tag{1}
\end{align*}
$$

Now equations of transformation are

$$
\left.\begin{array}{l}
\mathrm{x}=\mathrm{X} \cos 30^{\circ}-\mathrm{Y} \sin 30^{\circ}=\mathrm{X} \frac{\sqrt{3}}{2}-\mathrm{Y} \frac{1}{2}=\frac{\sqrt{3} \mathrm{X}-\mathrm{Y}}{2} \\
\mathrm{y}=\mathrm{X} \sin 30^{\circ}+\mathrm{Y} \cos 30^{\circ}=\mathrm{X} \frac{1}{2}+\mathrm{Y} \frac{\sqrt{3}}{2}=\frac{\mathrm{X}+\sqrt{3} \mathrm{Y}}{2} \tag{2}
\end{array}\right]
$$

Putting these values in (1)

$$
7\left(\frac{\sqrt{3} X-Y}{2}\right)^{2}-6 \sqrt{3}\left(\frac{\sqrt{3} X-Y}{2}\right)\left(\frac{X+\sqrt{3} Y}{2}\right)+13\left(\frac{X+\sqrt{3} Y}{2}\right)^{2}-16=0
$$

$$
7\left(\frac{3 X^{2}+Y^{2}-2 \sqrt{3} X Y}{4}\right)-\frac{-3 \sqrt{3}}{2}\left(\sqrt{3} X^{2}+3 X Y-X Y-\sqrt{3} y^{2}\right)+\frac{13}{4}\left(X^{2}+3 Y^{2}+2\right.
$$

$$
\sqrt{3} X Y)-16=0
$$

$$
21 X^{2}+7 Y^{2}-14 \sqrt{3} X Y-6 \sqrt{3}\left(\sqrt{3} X^{2}+2 X Y-\sqrt{3} Y^{2}\right)+13 X^{2}+39 Y^{2}+26 \sqrt{3}
$$

$$
X Y-64=0
$$

$$
\begin{gathered}
21 \mathrm{X}^{2}+7 \mathrm{Y}^{2}-14 \sqrt{3} \mathrm{XY}-18 \mathrm{X}^{2}-12 \sqrt{3} \mathrm{XY}+18 \mathrm{Y}^{2}+13 \mathrm{X}^{2}+39 \mathrm{Y}^{2}+26 \sqrt{3} \mathrm{XY}-64=0 \\
16 \mathrm{X}^{2}+64 \mathrm{Y}^{2}-64=0 \\
16 \mathrm{X}^{2}+64 \mathrm{Y}^{2}=64 \\
\frac{\mathrm{X}^{2}}{4}+\frac{\mathrm{Y}^{2}}{1}=1 \quad \rightarrow \quad \text { (3) which represents on ellipse }
\end{gathered}
$$

Now for values of $\mathrm{X} \& \mathrm{Y}$ solving (2)

$$
\begin{array}{lc}
\sqrt{3} X-Y=2 x & 3 X-\sqrt{3} Y=2 \sqrt{3} x \\
-\sqrt{3} X \pm 3 Y=-2 \sqrt{3} y & X+\sqrt{3} Y=2 y \\
\hline-4 Y=2 x-2 \sqrt{3} y & \\
-4 Y=2(x-\sqrt{3} y) & \\
& \\
Y=\frac{-1}{2}(x-\sqrt{3} y) \ldots(4) & \tag{4}
\end{array}
$$

From (3), we have

$$
\begin{aligned}
& \mathrm{a}^{2}=4, \quad \mathrm{~b}^{2}=1 \\
& \Rightarrow \quad \mathrm{e}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Coordinates of foci $=(\pm \mathrm{ae}, 0)$

$$
\begin{align*}
& (X, Y)=(\pm \sqrt{3}, 0) \\
& {\left[\frac{1}{2}(\sqrt{3} x+y), \frac{-1}{2}(x-\sqrt{3} y)\right]=(\pm \sqrt{3}, 0)} \\
& \frac{1}{2}(\sqrt{3} x+y)= \pm \sqrt{3} \quad \frac{-1}{2}(x-\sqrt{3} y)=0 \\
& \sqrt{3} x+y= \pm 2 \sqrt{3} \quad \text { (i) } \quad x-\sqrt{3} y)=0 \tag{ii}
\end{align*}
$$

Multiplying (ii) by $\sqrt{3} \&$ subtracting from (i)

$$
\begin{aligned}
& \sqrt{3} x+y=2 \sqrt{3} \quad \sqrt{3} x+y=-2 \sqrt{3} \\
& -\sqrt{3} x \mp 3 y=\underline{0} \quad-\sqrt{3} x \mp 3 y=\underline{0} \\
& 4 y=2 \sqrt{3} \\
& 4 y=-2 \sqrt{3} \\
& y=\frac{\sqrt{3}}{2} \quad y=\frac{-1}{2} \sqrt{3} \\
& x-\sqrt{3}\left(\frac{\sqrt{3}}{2}\right)=0 \quad \therefore \quad x-\sqrt{3}\left(-\frac{1}{2} \sqrt{3}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& x-\frac{3}{2}=0 \quad x+\frac{3}{2}=0 \\
& x=\frac{3}{2} \quad x=\frac{-3}{2}
\end{aligned}
$$

Coordinates of foci

$$
\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right) \quad\left(\frac{-3}{2}, \frac{-\sqrt{3}}{2}\right)
$$

Vertices

$$
\begin{aligned}
& (\pm \mathrm{a}, 0) \\
& (\mathrm{X}, \mathrm{Y}) \\
& \frac{1}{2}(\sqrt{3} \mathrm{x}+\mathrm{y}) \\
& =(\pm 2,0) \\
& \sqrt{3} \mathrm{x}+\mathrm{y}
\end{aligned} \mathrm{~m}, \quad \frac{1}{2}(\sqrt{3} \mathrm{y}-\mathrm{x})=0
$$

Solving above equations

$$
\begin{array}{ll}
\sqrt{3} x+y & = \\
\\
\sqrt{3} x+y & = \tag{v}\\
-x+\sqrt{3} y & =
\end{array} \quad \begin{gathered}
\text { (iii) } \\
-x+\sqrt{3} y=0
\end{gathered}
$$

Multiply equation (v) by $\sqrt{3}$ \& adding in (iii) and (iv)

$$
\begin{array}{rrrl}
\sqrt{3} x+y=4 & \sqrt{3} x+y & =-4 \\
-\sqrt{3} x+3 y & =0 & -\sqrt{3} x+3 y= & 4 y \\
\hline 4 y=4 & 4 y=-4 \\
4 y=4 & & 4=-1 \\
y=1 & \therefore & -x+\sqrt{3}(-1)=0 \\
& -x+\sqrt{3}(1)=0 & x=-\sqrt{3}
\end{array}
$$

Required vertex $(\sqrt{3}, 1) \&(-\sqrt{3},-1)$
For equation of major axes, for equation of minor axes

$$
\begin{array}{l|l}
\text { Put } \mathrm{Y}=0 & \text { Put } \mathrm{X}=0 \\
\frac{1}{2}(\sqrt{3} \mathrm{y}-\mathrm{x})=0 & \frac{1}{2}(\sqrt{3} \mathrm{x}+\mathrm{y})=0 \\
\sqrt{3} \mathrm{y}-\mathrm{x}=0 & \sqrt{3} \mathrm{x}+\mathrm{y}=0
\end{array}
$$

(vi) $\quad 4 x^{2}-4 x y+7 y^{2}+12 x+6 y-9=0$

Solution:

$$
\begin{aligned}
& \mathrm{a}=4, \quad \mathrm{~b}=7,2 \mathrm{~h}=-4 \\
& \tan 2 \theta=\frac{2 h}{a-b} \\
& =\frac{-4}{4-7}=\frac{-4}{-3}=\frac{4}{3} \\
& \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{4}{3} \Rightarrow 6 \tan \theta=4-4 \tan ^{2} \theta \\
& \Rightarrow 4 \tan ^{2} \theta+6 \tan \theta-4=0 \\
& 2 \tan ^{2} \theta+3 \tan \theta-2=0 \\
& 2 \tan ^{2} \theta+4 \tan \theta-\tan \theta-2=0 \\
& 2 \tan \theta(\tan \theta+2)-1(\tan \theta+2)=0 \\
& (\tan \theta+2)(2 \tan \theta-1)=0 \\
& \tan \theta+2=0,2 \tan \theta-1=0 \\
& \tan \theta=-2 \quad \text { (neglect it, because } \theta \text { is taken from } 1^{\text {st }} \text { Quadrant) }
\end{aligned}
$$

And also

$$
\begin{aligned}
& 2 \tan \theta-1=0 \\
& 2 \tan \theta=1 \quad \Rightarrow \tan \theta=\frac{1}{2} \\
& \cot \theta=2 \quad \Rightarrow \operatorname{cosec} \theta=\sqrt{1+\cot ^{2} \theta}=\sqrt{1+4}=\sqrt{5} \\
& \sin \theta=\frac{1}{\sqrt{5}} \Rightarrow \cos \theta=\sqrt{1-\sin ^{2} \theta} \\
& =\sqrt{1-\frac{1}{5}} \quad=\sqrt{\frac{5-1}{5}}=\frac{2}{\sqrt{5}}
\end{aligned}
$$

Now equations of transformation are

$$
\begin{align*}
& x=X \cos \theta-Y \sin \theta=X\left(\frac{2}{\sqrt{5}}\right)-Y\left(\frac{1}{\sqrt{5}}\right)=\frac{2 X-Y}{\sqrt{5}} \\
& y=X \sin \theta+Y \cos \theta=X \frac{1}{\sqrt{5}}+Y \frac{2}{\sqrt{5}}=\frac{X+2 Y}{\sqrt{5}} \tag{2}
\end{align*}
$$

Now putting values in (1)
$4\left(\frac{2 \mathrm{X}-\mathrm{Y}}{\sqrt{5}}\right)^{2}-4\left(\frac{2 \mathrm{X}-\mathrm{Y}}{\sqrt{5}}\right)\left(\frac{\mathrm{X}+2 \mathrm{Y}}{\sqrt{5}}\right)+7\left(\frac{\mathrm{X}+2 \mathrm{Y}}{\sqrt{5}}\right)^{2}+12\left(\frac{2 \mathrm{X}-\mathrm{Y}}{\sqrt{5}}\right)+6\left(\frac{\mathrm{X}+2 \mathrm{Y}}{\sqrt{5}}\right)-9=0$
$4\left(\frac{4 X^{2}+Y^{2}-4 X Y}{\sqrt{5}}\right)-\frac{4}{5}\left(2 X^{2}+4 X Y-X Y-2 Y^{2}\right)+\frac{7}{15}\left(X^{2}+4 Y^{2}+4 X Y\right)+\frac{12}{\sqrt{5}}$

$$
\begin{aligned}
& (2 X-Y)+\frac{6}{\sqrt{5}}(X+2 Y)-9=0 \\
& 4\left(4 \mathrm{X}^{2}-4 \mathrm{XY}+\mathrm{Y}^{2}\right)-4\left(2 \mathrm{X}^{2}+3 \mathrm{XY}-2 \mathrm{Y}^{2}\right)+7\left(\mathrm{X}^{2}+4 \mathrm{Y}^{2}+4 \mathrm{XY}\right)+12 \sqrt{5}(2 \mathrm{X}-\mathrm{Y}) \\
& +6 \sqrt{5}(\mathrm{X}+2 \mathrm{Y})-45=0 \\
& 16 \mathrm{X}^{2}-16 \mathrm{XY}+4 \mathrm{Y}^{2}-8 \mathrm{X}^{2}-12 \mathrm{XY}+8 \mathrm{Y}^{2}+7 \mathrm{X}^{2}+28 \mathrm{Y}^{2}+28 \mathrm{XY}+24 \sqrt{5} \mathrm{X}-12 \sqrt{5} \mathrm{Y} \\
& +6 \sqrt{5} X+12 \sqrt{5} Y-45=0 \\
& 15 X^{2}+40 Y^{2}+30 \sqrt{5} X-45=0 \\
& \Rightarrow \quad 3 \mathrm{X}^{2}+8 \mathrm{Y}^{2}+6 \sqrt{5} \mathrm{X}-9 \quad=0 \\
& 3 \mathrm{X}^{2}+6 \sqrt{5} \mathrm{X}+8 \mathrm{Y}^{2}=9 \\
& 3\left(\mathrm{X}^{2}+2 \sqrt{5} \mathrm{X}+(\sqrt{5})^{2}+8 \mathrm{Y}^{2}=9+3(\sqrt{5})^{2}\right. \\
& \Rightarrow \quad 3(\mathrm{X}+\sqrt{5})^{2}+8 \mathrm{Y}^{2}=24 \\
& \frac{(X+\sqrt{5})^{2}}{8}+\frac{Y^{2}}{3}=1 \\
& \text { (3) which represents on ellipse }
\end{aligned}
$$

Now, for values of $\mathrm{X} \& \mathrm{Y}$ solving (2)

$$
\begin{array}{ll}
2 \mathrm{X}-\mathrm{Y}=\sqrt{5} \mathrm{x} \\
\mathrm{X}+2 \mathrm{Y}=\sqrt{5} \mathrm{y} & \sqrt{5}
\end{array} \quad \begin{aligned}
2 \mathrm{X}-\mathrm{Y}=\sqrt{5} \mathrm{x} \\
\mathrm{X}+2 \mathrm{Y}=\sqrt{5} \mathrm{y}
\end{aligned}
$$

Multiply $1^{\text {st }}$ Equation by $2 \&$ multiply equation (2) by 2 and adding

$$
\begin{align*}
& 4 \mathrm{X}-2 \mathrm{y}=2 \sqrt{5} \mathrm{x} \quad 2 \mathrm{X}-\quad \mathrm{Y}=\sqrt{5} \mathrm{x} \\
& \begin{array}{ll}
X+2 y & =\sqrt{5} y \\
5 X & =\sqrt{5}(2 x+y)
\end{array} \quad-2 X \pm 4 Y=-2 \sqrt{5} y \\
& \Rightarrow \quad X \quad=\frac{1}{\sqrt{5}}(2 x+y) \quad \ldots(4) \quad Y=\frac{-1}{\sqrt{5}}(x-2 y) \rightarrow \tag{5}
\end{align*}
$$

From (3) $\quad a^{2}=8 \quad \& \quad b^{2}=3$

$$
\mathrm{e}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{8-3}{8}=\frac{5}{8} \Rightarrow \quad \mathrm{e}=\sqrt{\frac{5}{8}}
$$

Coordinates of foci $=(\pm \mathrm{ae}, 0)$

$$
\begin{array}{lll}
& (\mathrm{X}+\sqrt{5}, \mathrm{Y}) \quad=(\pm \sqrt{5}, 0) \\
\Rightarrow \quad & \frac{1}{\sqrt{5}}(2 \mathrm{x}+\mathrm{y})+\sqrt{5}= \pm \sqrt{5} \\
& 2 \mathrm{x}+\mathrm{y}= \pm 5-5 \\
2 \mathrm{x}+\mathrm{y}=0 \quad, \quad 2 \mathrm{x}+\mathrm{y} & =-10 \\
\mathrm{x}+2 \mathrm{y}=0 \quad, \quad \mathrm{x}-2 \mathrm{y} \quad=0
\end{array}
$$

Multiplying $1^{\text {st }}$ equation by 2

$$
\begin{aligned}
& 4 x+2 y=0 \\
& 2 x+y=-10 \\
& { }_{-} x+2 y=0 \\
& 3 x \quad=0 \quad \Rightarrow \quad x=0 \quad y=0 \\
& 5 y=-10 \\
& \mathrm{y}=-2 \quad \therefore \quad \mathrm{x}=-4
\end{aligned}
$$

Coordinates of foci are

$$
(0,0) \quad \& \quad(-4,-2)
$$

Vertices

$$
\begin{aligned}
& (\mathrm{X}+\sqrt{5}, \mathrm{Y})=(\pm \sqrt{8}, 0) \\
& X+\sqrt{5}= \pm \sqrt{8} \quad Y=0 \\
& \frac{1}{\sqrt{5}}(2 x+y)+\sqrt{5}=\sqrt{8} \quad, \quad \frac{1}{\sqrt{5}}(2 x+y)+\sqrt{5}=-\sqrt{8} \text { and } \frac{-1}{\sqrt{5}}(x-2 y)=0 \\
& 2 x+y+5=\sqrt{40}, \quad 2 x+y+5=-40 \& x-2 y=0 \\
& \Rightarrow \quad 2 x+y=\sqrt{40}-5 \quad, \quad 2 x+y=-40-5 \\
& -2 x \mp 4 y=0 \\
& 5 y=\sqrt{40}-5 \\
& y \quad=\frac{\sqrt{40}-5}{5} \quad \therefore \quad x-2\left(\frac{\sqrt{40}-5}{5}\right)=0 \\
& \text { WAL }=\frac{1}{x}=2\left(\frac{\sqrt{40}-5}{5}\right)
\end{aligned}
$$

Vertex is $\left(\frac{2 \sqrt{40}}{5}-1, \frac{\sqrt{40}}{5}-1\right)$
(vii) $\quad \mathrm{xy}-4 \mathrm{x}-2 \mathrm{y}=0$

Solution:

$$
\begin{aligned}
& x y-4 x-2 y=0 \\
& a=0, \quad b=0, \quad 2 h \quad=1
\end{aligned}
$$

Since $a=b$ therefore $\theta=45^{\circ}$ (always)
Now equations of transformations are

$$
\left.\begin{array}{l}
x=X \cos \theta-Y \sin \theta=X \cos 45^{\circ}-Y \sin 45^{\circ}=\frac{X-Y}{\sqrt{2}} \\
y=X \sin \theta+Y \cos \theta=X \sin 45^{\circ}+Y \cos 45^{\circ}=\frac{X+Y}{\sqrt{2}} \tag{2}
\end{array}\right]
$$

Putting values in (1)

$$
\begin{aligned}
& \left(\frac{X-Y}{\sqrt{2}}\right)\left(\frac{X+Y}{\sqrt{2}}\right)-4\left(\frac{X-Y}{\sqrt{2}}\right)-2\left(\frac{X+Y}{\sqrt{2}}\right)=0 \\
& \frac{X^{2}-Y^{2}}{2}-\frac{4}{\sqrt{2}}(X-Y)-\frac{2}{\sqrt{2}}(X+Y)=0 \\
& X^{2}-Y^{2}-4 \sqrt{2} X+4 \sqrt{2} Y-2 \sqrt{2} X-2 \sqrt{2} Y=0 \\
& X^{2}-6 \sqrt{2} X-Y^{2}+2 \sqrt{2} Y=0 \\
& \left(X^{2}-6 \sqrt{2} X+18\right)-\left(Y^{2}-2 \sqrt{2} Y+2\right)=18-2 \\
& \left(X^{2}-3 \sqrt{2}\right)^{2}-(Y-\sqrt{2})^{2}=16 \\
& \frac{(X-3 \sqrt{2})^{2}}{16}-\frac{(Y-\sqrt{2})^{2}}{16}=1 \quad \ldots .(3) \text { which represents hyperbola }
\end{aligned}
$$

Now for the values of $\mathrm{X} \& \mathrm{Y}$, solving (2)

From (3) we have $a^{2}=16, \quad b^{2}=16$

$$
\begin{array}{ll}
& \mathrm{e}^{2}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{16+16}{16}=\frac{32}{16}=2 \\
\Rightarrow \quad & \mathrm{e} \quad=\sqrt{2} \\
\text { foci } & (\pm \mathrm{ae}=0) \\
& (X-3 \sqrt{2}, Y-\sqrt{2}) \quad=(\pm 4 \sqrt{2}=0) \\
& X-3 \sqrt{2}= \pm 4 \sqrt{2} \quad Y-\sqrt{2}=0 \\
& X=3 \sqrt{2} \pm 4 \sqrt{2} \quad Y=\sqrt{2}
\end{array}
$$

$$
\frac{1}{\sqrt{2}}(x+y)=3 \sqrt{2} \pm 4 \sqrt{2} \quad \Rightarrow \quad x+y=6 \pm 8 \Rightarrow x+y=14, x+y=-2
$$

$$
\underline{x-y}=-2, \quad x-y=-2
$$

$$
2 \mathrm{x}=12 \quad 2 \mathrm{x}=-4
$$

$$
x=6 \quad x=-2
$$

$$
\begin{array}{cccc}
\Rightarrow \quad \begin{array}{ll}
x & =6 \\
6+y & =14
\end{array} \quad, \quad \begin{array}{l}
x=-2 \\
\\
\\
y=8
\end{array} & y=0 \quad \text { Required foci }(6,8) \&(-2,0)
\end{array}
$$

$$
\begin{aligned}
& X-Y=\sqrt{2} x \quad X-Y=\sqrt{2} x \\
& \text { Adding } \quad \mathrm{X}+\mathrm{Y}=\sqrt{2} \mathrm{y} \quad \text { Subtracting }-\mathrm{X} \pm \mathrm{Y}=-\sqrt{2} \mathrm{y} \\
& 2 \mathrm{X}=\sqrt{2}(\mathrm{x}+\mathrm{y}) \quad-2 \mathrm{Y}=\sqrt{2}(\mathrm{x}-\mathrm{y}) \\
& X=\frac{1}{\sqrt{2}}(x+y) \quad Y=\frac{-1}{\sqrt{2}}(x-y)
\end{aligned}
$$

Vertices $=(\pm \mathrm{a}, 0)$

Required vertices $(2+2 \sqrt{2}, 4+2 \sqrt{2}) \&(2-2 \sqrt{2}, 4-2 \sqrt{2})$
Next, equation of focal axis

$$
\begin{aligned}
& Y-\sqrt{2}=0 \\
& Y=\sqrt{2} \\
& -y)=\sqrt{2} \\
& x-y=-2
\end{aligned}
$$

$$
\frac{-1}{\sqrt{2}}(x-y)=\sqrt{2} \quad \sqrt{1}=50117000
$$

Equation of conjugate axis $X-3 \sqrt{2}=0$

$$
\begin{align*}
\Rightarrow \quad & X=3 \sqrt{2} \\
& \frac{1}{\sqrt{2}}(x+y)=3 \sqrt{2} \\
& x+y \quad=6 \tag{1}
\end{align*}
$$

(viii) $x^{2}+4 x y-2 y^{2}-6=0$

Solution:

$$
\begin{aligned}
& a=1, \quad 2 h=4 \quad b=-2 \\
& \tan 2 \theta=\frac{2 h}{a-b}=\frac{4}{3} \\
& \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{4}{3}
\end{aligned}
$$

$$
\begin{aligned}
& (\mathrm{X}-3 \sqrt{2}, \mathrm{Y}-\sqrt{2})=(\pm 4,0) \\
& \mathrm{X}-3 \sqrt{2}= \pm 4 \quad \mathrm{Y}-\sqrt{2}=0 \\
& \mathrm{X}=3 \sqrt{2} \pm 4 \quad \frac{-1}{\sqrt{2}}(\mathrm{x}-\mathrm{y})=\sqrt{2} \\
& \Rightarrow \quad \frac{1}{\sqrt{2}}(x+y)=3 \sqrt{2} \pm 4 \quad, x-y=-2 \Rightarrow x+y=6 \pm 4 \sqrt{2} \\
& x+y=6+4 \sqrt{2} \quad \& \quad x+y=6-4 \sqrt{2} \\
& \begin{aligned}
x-y & =-2 \\
\hline 2 x & =4+4 \sqrt{2}
\end{aligned} \\
& \begin{aligned}
x-y & =-2 \\
\hline 2 x & =4-4 \sqrt{2}
\end{aligned} \\
& \Rightarrow \quad x=2+2 \sqrt{2} \quad x=2-2 \sqrt{2} \\
& \therefore \quad \mathrm{y}=\mathrm{x}+2 \\
& \therefore \quad \mathrm{y}=\mathrm{x}+2 \\
& =2+2 \sqrt{2}+2 \quad=2-2 \sqrt{2}+2 \\
& \mathrm{y}=4+2 \sqrt{2} \\
& y=4-2 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \tan ^{2} \theta+3 \tan \theta-2=0 \\
& \tan \theta=\frac{-3 \pm \sqrt{25}}{4}=\frac{1}{2} \\
& \sec \theta=\sqrt{1+\tan ^{2} \theta}=\sqrt{1+\frac{1}{4}}=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2} \\
& \cos \theta=\frac{2}{\sqrt{5}} \sin \theta=\frac{1}{\sqrt{5}}
\end{aligned}
$$

Equations of transformation are

$$
\begin{align*}
& x=X \cos \theta-Y \sin \theta \Rightarrow \frac{2 X-Y}{\sqrt{5}} \tag{2}\\
& y=X \sin \theta+Y \cos \theta \Rightarrow \frac{X+2 Y}{\sqrt{5}} \tag{3}
\end{align*}
$$

Put in (1) we have

$$
\begin{aligned}
& \left(\frac{2 X-Y}{\sqrt{5}}\right)^{2}+4\left(\frac{2 X-Y}{\sqrt{5}}\right)\left(\frac{X+2 Y}{\sqrt{5}}\right)-2\left(\frac{X+2 Y}{\sqrt{5}}\right)^{2}-6=0 \\
& \frac{1}{5}\left(4 X^{2}+Y^{2}-4 X Y\right)+\frac{4}{5}\left(2 X^{2}+4 X Y-X Y-2 Y^{2}\right)-\frac{2}{5}\left(X^{2}+4 Y^{2}+4 X Y\right)-6=0 \\
& 10 X^{2}-15 Y^{2}=30 \\
& \frac{X^{2}}{3}-\frac{Y^{2}}{3}=1 \\
& a^{2}=3, b^{2}=2
\end{aligned}
$$

For center Put $\mathrm{X}=0 \square, \quad \overline{\mathrm{Y}}=0$

$$
\begin{aligned}
\Rightarrow \quad \frac{2 x+y}{\sqrt{5}} & =0 \quad \Rightarrow \quad 2 x+y \quad 0 \quad \& \quad Y=0 \\
\frac{2 x-y}{\sqrt{5}} & =0 \quad \Rightarrow \quad-x \quad+2 y=0
\end{aligned}
$$

Solving $2 \mathrm{x}+\mathrm{y}=0 \quad \&-\mathrm{x}+2 \mathrm{y}=0$
we get
$\mathrm{x}=0, \mathrm{y}=0$
Thus center $(0,0)$
For transverse axis put $\mathrm{Y}=0$ we get

$$
x-2 y=0
$$

Conjugate axis put $\mathrm{X}=0$, we get $2 \mathrm{x}+\mathrm{y}=0$

Vertices

$$
\begin{align*}
& (\mathrm{X}, \mathrm{Y})=(\pm \sqrt{3}, 0) \\
& \frac{2 \mathrm{x}+\mathrm{y}}{\sqrt{5}}= \pm \sqrt{15} \quad \text { (i) } \quad \frac{2 \mathrm{y}-\mathrm{x}}{\sqrt{5}}=0 \quad \Rightarrow \quad x=2 y \tag{ii}
\end{align*}
$$

By solution of (i) \& (ii) we get

$$
\left(2 \sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}\right), \quad\left(-2 \sqrt{\frac{3}{5}},-\sqrt{\frac{3}{5}}\right)
$$

Foci $\quad(X, Y)=(\pm \sqrt{5}, 0)$

$$
\begin{array}{lc}
X= \pm \sqrt{5} & Y=0 \\
2 x+y= \pm 5 & ,
\end{array} \quad-x+2 y=0
$$

After solution of above equations

$$
\begin{equation*}
(2,1) \quad \&(-2,-1) \tag{1}
\end{equation*}
$$

(ix) $x^{2}-4 x y-2 y^{2}+10 x+4 y=0$

Solution:

$$
\begin{aligned}
& \mathrm{a}=1, \quad \mathrm{~b}=-2 \quad 2 \mathrm{~h} \quad=-4 \\
& \tan 2 \theta=\frac{2 \mathrm{~h}}{\mathrm{a}-\mathrm{b}}=\frac{-4}{3} \quad \begin{array}{l}
\text { After cross multiplication we get } \\
\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{-4}{3} \quad 2 \\
2 \tan ^{2} \theta-3 \tan \theta-2=0 \\
2 \tan ^{2} \theta-4 \tan \theta+\tan \theta-2 \\
2 \tan \theta(\tan \theta-2)+1(\tan \theta-2)=0 \\
\tan \theta-2=0 \quad 2 \tan \theta+1=0 \\
\tan \theta=0 \\
\cot \theta=\frac{1}{2} \\
\sec \theta=\sqrt{5} \quad \cos \theta=\frac{1}{\sqrt{5}}=\sin \theta=\frac{2}{\sqrt{5}}
\end{array}
\end{aligned}
$$

Now equations of transformation are

$$
\begin{aligned}
& \quad x=X \cos \theta-Y \sin \theta=\frac{X-2 Y}{\sqrt{5}} \\
& \\
& \left.x=X \sin \theta+Y \cos \theta=\frac{2 X-Y}{\sqrt{5}}\right] \quad \text { (2) Put in (1) } \\
& \left(\frac{X-2 Y}{\sqrt{5}}\right)^{2}-4\left(\frac{X-2 Y}{\sqrt{5}}\right)\left(\frac{2 X-Y}{\sqrt{5}}\right)-2\left(\frac{2 X-Y}{\sqrt{5}}\right)^{2}+10\left(\frac{X-2 Y}{\sqrt{5}}\right)+4\left(\frac{2 X-Y}{\sqrt{5}}\right)=0 \\
& \Rightarrow \quad-15 X^{2}+10 Y^{2}+18 \sqrt{5} X-16 \sqrt{5} Y=0 \\
& \Rightarrow \quad 10\left(Y^{2}-\frac{16 \sqrt{5}}{10} Y\right)-15\left(X^{2}-\frac{18 \sqrt{5}}{15} X\right)=0
\end{aligned}
$$

$$
\begin{gathered}
10\left(\mathrm{Y}^{2}-\frac{8 \sqrt{5}}{5} \mathrm{Y}\right)-15\left(\mathrm{X}^{2}-\frac{6 \sqrt{5}}{5} \mathrm{X}\right)=0 \\
10\left[\mathrm{Y}^{2}-\frac{8 \sqrt{5}}{5} \mathrm{Y}+\left(\frac{4}{\sqrt{5}}\right)^{2}\right]-15\left[\mathrm{X}^{2}-\frac{6 \sqrt{5}}{5} \mathrm{X}+\left(\frac{3}{\sqrt{5}}\right)^{2}\right]=10\left(\frac{16}{5}\right)-15\left(\frac{9}{5}\right) \\
10\left(\mathrm{Y}-\frac{4}{\sqrt{5}}\right)^{2}-15\left(\mathrm{X}-\frac{3}{\sqrt{5}}\right)^{2}=5 \\
\frac{\left(\mathrm{Y}-\frac{4}{\sqrt{5}}\right)^{2}}{\frac{1}{2}}-\frac{\left(\mathrm{X}-\frac{3}{\sqrt{5}}\right)^{2}}{\frac{1}{3}}=1 \quad \ldots \ldots .(3) \quad \text { Hyperbola } \\
\quad=\frac{1}{2} \quad \& \quad \mathrm{~b}^{2}=\frac{1}{3} \\
\mathrm{a}^{2}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{5}{3} \quad \Rightarrow \quad \mathrm{e}=\sqrt{\frac{5}{3}}
\end{gathered}
$$

Center put

$$
\begin{aligned}
Y-\frac{4}{5}=0 & \Rightarrow Y=\frac{4}{\sqrt{5}}, X-\frac{3}{\sqrt{5}}=0 \Rightarrow \quad X=\frac{3}{\sqrt{5}} \\
X-2 Y & =\sqrt{5} \mathrm{x} \\
2 \mathrm{X}+\mathrm{Y} & =\sqrt{5} \mathrm{y}
\end{aligned}, \begin{aligned}
\mathrm{X}-2 \mathrm{Y} & =\sqrt{5} \mathrm{x} \\
2 \mathrm{X}+\mathrm{Y} & =\sqrt{5} \mathrm{y}
\end{aligned}
$$

Multiplying $2^{\text {nd }}$ equation by $2 \longrightarrow$ Multiplying equation $1^{\text {st }}$ by 2

$$
\begin{array}{rlrl}
\mathrm{X}-2 \mathrm{Y}=\sqrt{5} \mathrm{x} & 2 \mathrm{X} & -4 \mathrm{Y}=2 \sqrt{5} \mathrm{x} \\
4 \mathrm{X}+2 \mathrm{Y}=2 \sqrt{5} \mathrm{y} & & -2 \mathrm{X} \pm \mathrm{Y}=-\sqrt{5} \mathrm{y} \\
\cline { 1 - 2 }=\sqrt{5}(\mathrm{x}+2 \mathrm{y}) & & -5 \mathrm{y}=\sqrt{5}(2 \mathrm{x}-\mathrm{y}) \\
\mathrm{X} & =\frac{1}{\sqrt{5}}(\mathrm{x}+2 \mathrm{y}) & & -\frac{1}{\sqrt{5}}(2 \mathrm{x}-\mathrm{y})=\frac{4}{\sqrt{5}} \\
\frac{3}{\sqrt{5}}=\frac{1}{\sqrt{5}}(\mathrm{x}+2 \mathrm{y}) & -2 \mathrm{x}+\mathrm{y}) \\
\mathrm{x}+2 \mathrm{y}=3 & =4
\end{array}
$$

$$
-2 x+y=4
$$

After solution we get
Center $\quad(-1,2)$
Foci $=(0, \pm$ ae $)$

$$
\begin{array}{ll}
\left(X-\frac{3}{\sqrt{5}},\right. & \left.Y-\frac{4}{\sqrt{5}}\right)=\left(0, \pm \frac{\sqrt{5}}{\sqrt{6}}\right) \\
X-\frac{3}{\sqrt{5}}=0 & Y-\frac{4}{\sqrt{5}}= \pm \frac{\sqrt{5}}{\sqrt{6}} \\
X=\frac{3}{\sqrt{5}} & Y=\frac{4}{\sqrt{5}} \pm \frac{\sqrt{5}}{\sqrt{6}} \\
\frac{1}{\sqrt{5}}(x+2 y)=\frac{3}{\sqrt{5}} & \frac{-1}{\sqrt{5}}(2 x-2 y)=\frac{4}{\sqrt{5}}+\frac{\sqrt{5}}{\sqrt{6}} \\
x+2 y=3 & (1)^{\prime} \\
& -2 x+y=4 \pm \frac{5}{\sqrt{6}}
\end{array}
$$

After simplification foci are

$$
\left(-1-\frac{2}{\sqrt{6}}, 2+\frac{1}{\sqrt{6}}\right) \quad \& \quad\left(-1+\frac{2}{\sqrt{6}}, 2-\frac{1}{\sqrt{6}}\right)
$$

Q.2: Show that

$10 x y+8 x-15 y-12=0$ represents a pair of straight lines and find an equation of each line.

Solution:

$$
10 x y+8 x-15 y-12=0
$$

Compare it with $\mathrm{ax}^{2}+2 \mathrm{~h} x y+b y^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$

$$
\mathrm{a}=0, \quad \mathrm{~h}=5, \quad \mathrm{~b}=0, \quad \mathrm{~g}=4, \quad \mathrm{f}=\frac{-15}{2} \mathrm{C}=-12
$$

Now consider determinant $=\left|\begin{array}{ccc}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right|=\left|\begin{array}{ccc}0 & 5 & 4 \\ 5 & 0 & \frac{-15}{2} \\ 4 & \frac{-15}{2} & -12\end{array}\right|$

$$
\begin{aligned}
& =0\left|\begin{array}{cc}
0 & \frac{-15}{2} \\
\frac{-15}{2} & -12
\end{array}\right|-5\left|\begin{array}{cc}
5 & \frac{-15}{2} \\
4 & -12
\end{array}\right|+4\left|\begin{array}{cc}
5 & 0 \\
4 & \frac{-15}{2}
\end{array}\right| \\
& =0-5(-60+30)+4\left(\frac{-75}{2}\right) \Rightarrow 150-150=0
\end{aligned}
$$

This shows that equation (1) represents a pair of straight line, now we'll solve (1) as

$$
\begin{align*}
& 10 x y+8 x-15 y-12=0 \\
& 2 x(5 y+4)-3(5 y+4)=0 \\
& (5 y+4)(2 x-3)=0 \\
& 5 y+4=0, \quad 2 x-3=0 \tag{1}
\end{align*}
$$

(ii) $6 x^{2}+x y-y^{2}-21 x-8 y+9=0$

Solution:

$$
\begin{aligned}
& \text { Comparing by } \mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0 \\
& \mathrm{a}=6, \quad \mathrm{~h}=\frac{1}{2}, \quad \mathrm{~b}=-1, \quad \mathrm{~g}=\frac{-21}{2}, \quad \mathrm{f}=-4, \quad \mathrm{c}=9 \\
& \text { Now consider determinant }=\left|\begin{array}{ccc}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right| \\
& =\left|\begin{array}{ccc}
6 & \frac{1}{2} & \frac{-21}{2} \\
\frac{1}{2} & -1 & -4 \\
\frac{-21}{2} & -4 & 9
\end{array}\right| \\
& =6\left|\begin{array}{cc}
-1 & -4 \\
-4 & 9
\end{array}\right|-\frac{1}{2}\left|\begin{array}{cc|c|cc|}
\hline \frac{1}{2} & -4 & & \frac{1}{2} & -1 \\
\frac{-21}{2} & 9
\end{array}\right|-\frac{21}{2}\left|\begin{array}{cc}
\frac{-21}{2} & -4
\end{array}\right| \\
& =6(-9-16)-\frac{1}{2}\left(\frac{9}{2}-\frac{84}{2}\right)-\frac{21}{2}\left(\frac{-4}{2}-\frac{21}{2}\right) \\
& =6(-25)-\frac{1}{2}\left(\frac{-75}{2}\right)-\frac{21}{2}\left(\frac{-25}{2}\right) \\
& =-150+\frac{75}{4}+\frac{525}{4} \\
& =-150+150=0
\end{aligned}
$$

This shows that given equation (1) represents a pair of straight lines. Now rearranging (1) we have

$$
6 x^{2}+(y-21) x-\left(y^{2}+8 y-9\right)=0
$$

By Quadratic formula

$$
\begin{aligned}
& x=\frac{-(y-21) \pm \sqrt{(y-21)^{2}+4(6)\left(y^{2}+8 y-9\right)}}{2(6)} \\
& x=\frac{-(y-21) \pm \sqrt{y^{2}+441-42 y+24 y^{2}+192 y-216}}{12} \\
& x=\frac{-y+21 \pm \sqrt{25 y^{2}+150 y+225}}{12} \\
& x=\frac{-y+21 \pm{\sqrt{(5 y+15)^{2}}}^{2}}{12}=\frac{-y+21 \pm(5 y+15)}{12} \\
& x=\frac{-y+21+5 y+15}{12}, \frac{-y+21-5 y-15}{12} \\
& x=\frac{4 y+36}{12} \quad x=\frac{-6 y+6}{12} \\
& x=\frac{4(y+9)}{12} \quad x=\frac{6(-y+1)}{12} \\
& x=\frac{y+9}{3} \quad x=\frac{-y+1}{2} \\
& 3 x-y-9=0 \quad 2 x+y-1=0 \quad \text { Ans. }
\end{aligned}
$$

Q.3: Find an equation of tangent to each of the given conics at indicated point.
(i) $3 x^{2}-7 y^{2}+2 x-y-48$

Solution:

$$
\begin{aligned}
& 3 x^{2}-7 y^{2}+2 x-y-48=0 \\
& \text { Diff. w.r.t 'x' } \\
& 6 x-14 y \frac{d y}{d x}+2-\frac{d y}{d x}=0 \\
& (-14 y-1) \frac{d y}{d x}=-6 x-2 \\
& \frac{d y}{d x}=\frac{-6 x-2}{-14 y-1}=\frac{6 x+2}{14 y+1} \\
& \mathrm{~m}=\left.\frac{d y}{d x}\right|_{(4,1)}=\frac{6(4)+2}{14(1)+1}=\frac{26}{15}
\end{aligned}
$$

Equation of tangent at the point $(4,1)$ is

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =\frac{26}{15}(x-4)
\end{aligned}
$$

$$
15 y-15=26 x-104
$$

$\Rightarrow \quad 26 \mathrm{x}-15 \mathrm{y}-89=0$
(ii) $\quad x^{2}+5 x y-4 y^{2}+4=0 \quad$ at $y=-1$

Solution:

$$
\begin{aligned}
& x^{2}+5 x y-4 y^{2}+4=0 \\
& \text { Put } y=-1 \\
& x^{2}-5 x-4+4=0 \\
& x(x-5)=0 \\
& x=0 \quad, \quad x=5
\end{aligned}
$$

$$
\text { We have two points }(0,-1) \quad \&(5,-1)
$$

Now diff (1) w.r.t 'x'

$$
2 x+5\left[y+\frac{d y}{d x} x\right]-8 y \frac{d y}{d x}=0
$$

$$
2 x+5 y+5 x \frac{d y}{d x}-8 y \frac{d y}{d x} \quad=0
$$

$$
(5 x-8 y) \frac{d y}{d x}=-2 x-5 y
$$

$$
\frac{d y}{d x}=\frac{-(2 x+5 y)}{-(8 y-5 x)}
$$

$$
\mathrm{m}=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{(0,-1)}=\frac{2(0)+5(-1)}{8(-1)-5(0)}=\frac{-5}{8}=\frac{5}{8}
$$

Equation of tangent at point $(0,-1)$ is

$$
\begin{aligned}
& \mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right) \\
& \mathrm{y}+1=\frac{5}{8}(\mathrm{x}-0) \\
& 8 \mathrm{y}+8 \quad=5 \mathrm{x} \quad \Rightarrow \quad 5 \mathrm{x}-8 \mathrm{y}-8=0 \quad \text { Ans }
\end{aligned}
$$

Next

$$
\mathrm{m}=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{(5,-1)}=\frac{2(5)+5(-1)}{8(-1)-5(5)}=\frac{10-5}{-8-25}=\frac{5}{-33}
$$

Equation of tangent at $(5,-1)$ is

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y+1 & =\frac{-5}{33}(x-5) \\
33 y+33 & =-5 x+25 \\
5 x+33 y & =-8 \quad \text { Ans }
\end{aligned}
$$

(iii) $\quad x^{2}+4 x y-3 y^{2}-5 x-9 y+6=0 \quad$ at $x=3$

Solution:

$$
\begin{equation*}
x^{2}+4 x y-3 y^{2}-5 x-9 y+6=0 \tag{1}
\end{equation*}
$$

Put $\mathrm{x}=3$
$9+12 y-3 y^{2}-15-9 y+6=0$
$-3 y^{2}+3 y=0$
$-3 y(y-1)=0$
$\Rightarrow \quad y=0 \quad, \quad y=1$
Required points are $(3,0) \&(3,1)$
Diff. (1) w.r.t ' x '
$2 x+4\left[y+x \frac{d y}{d x}\right]-3\left(2 y \frac{d y}{d x}\right)-5-9 \frac{d y}{d x}=0$
$2 x+4 y+4 x \frac{d y}{d x}-6 y \frac{d y}{d x}-5-9 \frac{d y}{d x}=0$
$(4 x-6 y-9) \frac{d y}{d x}=-2 x-4 y+5$
$\frac{d y}{d x}=\frac{-2 x-4 y+5}{4 x-6 y-9}$
$\mathrm{m}=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{(3,0)}=\frac{-2(3)-4(0)+5}{4(3)-6(0)-9}$
$\mathrm{m}=\frac{-6+5}{12-9}=\frac{-1}{3}=5 \mathrm{D} 日 \sqrt{3}, 00 \%$
Equation of tangent at $(3,0)$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-0 & =\frac{-1}{3}(x-3) \\
3 y & =-x+3 \quad \Rightarrow \quad x+3 y-3=0
\end{aligned}
$$

Ans.
Next, $\quad m \quad=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{(3,1)}=\frac{-2(3)-4(1)+5}{4(3)-6(1)-9}=\frac{-6-4+5}{12-6-9}=\frac{5}{3}$
Equation of tangent at $(3,1)$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{5}{3}(x-3) \\
& 3 y-3=5 x-15 \\
& 5 x-3 y-12=0
\end{aligned}
$$

