

VECTORS

Vectors:

A vector quantity is that possesses both magnitude and direction i.e. displacement, velocity, weight, force etc.

Scalar:

A scalar quantity is that possesses only magnitude. It can be specified by a number i.e. mass, time, density, length, volume etc.

Magnitude/Length/Norm/Modulus of a Vector:

The positive real number, which is measure of the length of the vector, is called modulus, length, magnitude or norm of a vector.

Formula

$$
\hat{\hat{v}}=\frac{\underline{\underline{v}}}{|\underline{v}|}
$$

Zero Vector:

If terminal point B of a vector $A B$ concides with its initial point A, then $|\overrightarrow{A B}|=0$ called zero vector or Null vector.

Position vector:

The vector, whose initial point O is origin \& whose terminal point is P , is called position vector of OP.

EXERCISE 7.1

Q. $1 \quad$ Write the vector $\overrightarrow{P Q}$ in the form $\mathbf{x i}+\mathbf{y j}$.

(i) $\quad \mathbf{P}(2,3), \quad \mathbf{Q}(6,-2)$

Solution:

$$
\begin{aligned}
& \mathrm{P}(2,3), \mathrm{Q}(6,-2) \\
& \overrightarrow{\mathrm{PQ}} \quad=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}-\text { position vector of } \mathrm{P} \\
& \\
& =(6-2) \underline{i}+(-2-3) \underline{j}=4 \underline{i}-5 \underline{j}
\end{aligned}
$$

(ii) $\quad P(0,5), Q(-1,-6)$

Solution:

$$
\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}
$$

$$
=(-1-0) \underline{i}+(-6-5) \underline{j}=-\underline{i}-11 \underline{j}
$$

Q.2: Find the magnitude of the vector \mathbf{u}.

Formula \quad Magnitude or length or Norm of $\underline{v}=x \underline{i}+\mathbf{y} \underline{j}+\mathrm{zk}$ is $|\mathbf{V}|=\sqrt{x^{2}+y^{2}+z^{2}}$
(i) $\underline{\mathbf{u}}=2 \underline{i}-7 \underline{\mathbf{j}}$

Solution:

$\underline{\mathrm{u}} \quad=2 \underline{i}-7 \underline{\mathrm{j}}$
$|\underline{u}|=\sqrt{(2)^{2}+(-7)^{2}}=\sqrt{4+49}=\sqrt{53}$
(ii) $\underline{\mathbf{u}} \quad=\underline{i}+\underline{\mathbf{j}}$

Solution:

$\underline{\mathrm{u}} \quad=\underline{i}+\underline{\mathrm{j}}$

$$
|\underline{\mathrm{u}}|=\sqrt{(1)^{2}+(1)^{2}}=\sqrt{2}
$$

(ii) $\underline{\mathbf{u}}=[3,-4] \quad$ (Lahore Board 2005)

Solution:

$$
\begin{aligned}
& \underline{\mathrm{u}}=3 \underline{i}-4 \underline{\mathrm{j}} \\
& \underline{\mathrm{u}} \mid=\sqrt{(3)^{2}+(-4)^{2}}=\sqrt{9+16}=\sqrt{25}=5
\end{aligned}
$$

Q. 3 If $\underline{\mathbf{u}}=2 \underline{i}-7 \underline{\mathbf{j}}, \underline{\mathbf{v}}=\underline{i}-\mathbf{6} \underline{\mathbf{j}} \quad \& \quad \underline{\mathbf{w}}=-\underline{i}+\underline{\mathbf{j}}$, find the following vectors.
(i) $\underline{\mathbf{u}}+\underline{\mathbf{v}}-\underline{\mathbf{w}}$

Solution:

$$
\begin{aligned}
\underline{\mathrm{u}}+\underline{\mathrm{v}}-\underline{\mathrm{w}} & =(2 \underline{i}-7 \underline{\mathrm{j}})+(\underline{i}-6 \underline{\mathrm{j}})-(-\underline{i}+\underline{\mathrm{j}}) \\
& =2 \underline{i}-7 \underline{\mathrm{j}}+\underline{i}-6 \underline{j}+\underline{i}-\mathrm{j} \quad=4 \underline{i}=14 \underline{\mathrm{j}} \quad \text { Ans. }
\end{aligned}
$$

(ii) $2 \underline{\mathbf{u}}-3 \underline{\mathbf{v}}+4 \underline{\mathbf{w}}$

Solution:

$$
\begin{array}{ll}
& 2 \underline{\mathrm{u}}-3 \underline{\mathrm{v}}+4 \underline{\mathrm{w}} \\
& 2(2 \underline{i}-7 \underline{\mathrm{j}})-3(\underline{i}-6 \underline{\mathrm{j}})+4(-\underline{i}+\underline{\mathrm{j}}) \\
& =4 \underline{i}-14 \underline{\mathrm{j}}-3 \underline{i}+18 \underline{\mathrm{j}}-4 \underline{i}+4 \underline{\mathrm{j}}=-3 \underline{i}+8 \underline{j} \\
\text { (iii) } \quad \frac{\mathbf{1}}{\mathbf{2}} \underline{\mathbf{u}}+\frac{\mathbf{1}}{\mathbf{2}} \underline{\mathbf{v}}+\frac{\mathbf{1}}{\mathbf{2}} \underline{\mathbf{w}}
\end{array}
$$

Solution:

$$
\begin{array}{ll}
= & \frac{1}{2}[\underline{\mathrm{u}}+\underline{\mathrm{v}}+\underline{\mathrm{w}}] \\
= & \frac{1}{2}[2 \underline{i}-7 \underline{\mathrm{j}}+\underline{i}-6 \underline{\mathrm{j}}-\underline{i}+\underline{\mathrm{j}}] \\
= & \frac{1}{2}[2 \underline{i}-12 \underline{\mathrm{j}}]
\end{array}
$$

$$
=\quad \frac{2}{2}[\underline{i}-6 \underline{\mathrm{j}}]=\underline{\mathrm{i}}-6 \mathrm{j}
$$

Q. 4 Find the sum of the vectors $\overrightarrow{\mathrm{AB}} \& \overrightarrow{\mathrm{CD}}$, given the four points $A(1,-1)$, B (2, 0), C(-1, 3) \& $\mathrm{D}(-2,2)$

Solution:

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
& =(2-1) \underline{i}+(0+1) \underline{j}=\underline{i}+\underline{j} \\
\overrightarrow{\mathrm{CD}} & =\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OC}} \\
& =(-2+1) \underline{i}+(2-3) \underline{j}=-\underline{i}-\underline{j} \\
\text { Sum } & =\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{CD}}=\underline{i}+\underline{j}-\underline{i}-\underline{j}=0 \underline{i}+0 \underline{j} \quad=\text { Null vector }
\end{aligned}
$$

Q. 5 Find the vector from the point A to the origin, where $\overrightarrow{A B}=4 \underline{i}-2 \underline{j}$ and B is the point $(-2,5)$.

Solution:

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =4 \underline{i}-2 \underline{j} \\
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{OB}} & =-\overrightarrow{\mathrm{OA}} \\
\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{OB}} & =\overrightarrow{\mathrm{AO}} \\
\overrightarrow{\mathrm{AO}} & =(4 \underline{i}-2 \underline{j})-(-2 \underline{i}+5 \underline{j}) \\
\overrightarrow{\mathrm{AO}} & =6 \underline{i}-7 \underline{\mathrm{j}}
\end{aligned}
$$

Q. 6 Find a unit vector in the direction of the vector given below
(i) $\quad \underline{\mathbf{v}}=2 \underline{i}-\underline{\mathbf{j}}$
(Lahore Board 2009, 2010)

Solution:
$\mathrm{v} \quad=2 \underline{i}-\underline{\mathrm{j}}$
$|\underline{\mid}|=\sqrt{(2)^{2}+(-1)^{2}}$
$|\underline{\mathrm{v}}|=\sqrt{4+1}=\sqrt{5}$

Required unit vector is $\hat{\mathrm{v}}=\underline{\underline{\mathrm{v}}} \left\lvert\, \underline{\underline{\mathrm{v}} \mid}=\frac{2 \underline{i}-\underline{\underline{\mathrm{j}}}}{\sqrt{5}}=\frac{2}{\sqrt{5}} \quad \underline{i}-\frac{1}{\sqrt{5}}\right.$ i
(ii) $\underline{\mathbf{v}}=\frac{1}{2} \underline{i}+\frac{\sqrt{3}}{2} \underline{j}$

Solution:

$$
\begin{aligned}
& \underline{\mathrm{v}}=\frac{1}{2} \underline{i}+\frac{\sqrt{3}}{2} \underline{\mathrm{j}} \\
& \left\lvert\, \underline{\mathrm{v}}=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{\frac{1}{4}+\frac{3}{4}}=\sqrt{\frac{4}{4}}=1\right.
\end{aligned}
$$

Required unit vector is $\hat{v}=\frac{\underline{\underline{v}}}{|\underline{v}|}=$
(iii) $\underline{v} \quad=\frac{-\sqrt{3}}{2} \underline{i}-\frac{1}{2} \underline{j}$

Solution:

$\underline{v}=\frac{-\sqrt{3}}{2} \underline{i}-\frac{1}{2} \underline{j}$
$|\underline{v}|=\sqrt{\left(\frac{-\sqrt{3}}{2}\right)^{2}+\left(\frac{-1}{2}\right)^{2}}=\sqrt{\frac{3}{4}+\frac{1}{4}}=1$
Required unit vector $\hat{\mathrm{v}}=\frac{\underline{\mathrm{v}}}{|\underline{v}|}=\frac{\frac{\sqrt{3}}{2} \underline{i}-\frac{1}{2} \underline{\mathrm{j}}}{1}=\frac{-\sqrt{3}}{2} \underline{i}-\frac{1}{2} \underline{j}$
Ans.
Q. 7 If A, B and C are respectively the points $(2,-4),(4,0)(1,6)$. Use vectors to find coordinates of point D if
(i) ABCD is a parallelogram

Solution:

Let $\mathrm{D}(\mathrm{x}, \mathrm{y})$ be the required vertex.
Since $A B C D$ is a parallelogram
So $\quad \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{DC}}$

$$
\begin{aligned}
& (4-2) \underline{i}+(0+4) \underline{j}=(1-\mathrm{x}) \underline{i}+(6-\mathrm{y}) \underline{\mathrm{j}} \\
& 2 \underline{i}+4 \underline{\mathrm{j}}=(1-\mathrm{x}) \underline{i}+(6-\mathrm{y}) \underline{\mathrm{j}}
\end{aligned}
$$

By comparing

$$
2=1-x, \quad 4=6-y
$$

$$
\begin{array}{ll}
x=1-2, & y=6-4 \\
x=-1 & , \\
y=2
\end{array}
$$

Required coordinates of D are $(-1,2)$

(ii) ADBC is a parallelogram.

Solution:

Since ADBC is a parallelogram
So $\quad \overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{CB}}$
$(\mathrm{x}-2) \underline{i}+(\mathrm{y}+4) \underline{\mathrm{j}}=(4-1) \underline{i}+(0-6) \underline{\mathrm{j}}$
$(\mathrm{x}-2) \underline{i}+(\mathrm{y}+4) \underline{i}=3 \underline{i}-6 \underline{j}$
By comparing
$\begin{array}{lrl}x-2=3, & y+4 & =-6 \\ x=5\end{array}, \quad y=-10$

Required coordinates of D are $(5,-10)$
Q. $8 \quad$ If B, C and D are respectively $(4,1),(-2,3) \&(-8,0)$. Use vector method to find the coordinates of the point
(i) A if ABCD is a parallelogram

Solution:

Let the coordinates of point A be (x, y)
Since ABCD is a parallelogram
Thus, $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{DC}}$ $(4-\mathrm{x}) \underline{i}+(1-\mathrm{y}) \underline{\mathrm{j}}=(-2+8) \underline{i}+(3-0) \underline{j}$ $(4-\mathrm{x}) \underline{i}+(1-\mathrm{y}) \underline{\mathrm{j}}=6 \underline{i}+3 \underline{\mathrm{j}}$
By comparing
$\begin{array}{ll}4-x=6, & 1-y=3 \\ 4-6=x, & 1-3=y\end{array}$,
$-2=x, \quad-2=y$
Therefore, required point A is $(-2,-2)$
(ii) E, if AEBD is a parallelogram

Solution:

Let the coordinates of E be $=(\mathrm{x}, \mathrm{y})$ B (4, 1), A ($-2,-2$), D ($-8,0$), E (x, y)
Since AEBD is a parallelogram
So $\overrightarrow{\mathrm{AE}}=\overrightarrow{\mathrm{DB}}$

$$
\begin{gathered}
(\mathrm{x}+2) \underline{i}+(\mathrm{y}+2) \underline{\mathrm{j}}=(4+8) \underline{i}+(1-0) \underline{\mathrm{j}} \\
(\mathrm{x}+2) \underline{i}+(\mathrm{y}+2) \underline{\mathrm{j}}=12 \underline{i}+\underline{\mathrm{j}}
\end{gathered}
$$

By comparing
$\mathrm{x}+2=12, \quad \mathrm{y}+2=1$
$x=12-2, \quad y=1-2$
$\mathrm{x}=10, \quad \mathrm{y}=-1$

Coordinates of E are $(10,-1)$
Q． 9 If D is origin and $\overrightarrow{O P}=\overrightarrow{A B}$ ，find the point，where A and B are $(-3,7) \&(1,0)$ respectively．

Solution：

Let the coordinates of point P be (x, y)
Therefore
$\mathrm{O}(0,0), \quad \mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{A}(-3,7), \quad \mathrm{B}(1,0)$
Since
$\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{AB}}$
$(\mathrm{x}-0) \underline{i}+(\mathrm{y}-0) \underline{\mathrm{j}}=(1+3) \underline{i}+(0-7) \underline{\mathrm{j}}$
$\mathrm{x} \underline{i}+\mathrm{y} \underline{\mathrm{j}}=4 \underline{i}-7 \underline{\mathrm{j}}$
$(x, y)=(4,-7)$ required point．
Q． 10 Use vector to show that ABCD is a parallelogram when the points $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ are respectively $(0,0),(a, 0),(b, c) \&(b-a, c)$ ．
（Lahore Board 2009 （supply））

Solution：

Let ABCD be a parallelogram We have to prove that

$$
\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{DC}} \quad \& \quad \overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{BC}}
$$

Now

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
& =(\mathrm{a}-0) \underline{i}+(0-0) \underline{\mathrm{j}}=\mathrm{a} \underline{i}+0 \underline{\mathrm{j}}
\end{aligned}
$$

$$
\begin{align*}
\overrightarrow{\mathrm{DC}} & =\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OD}} \\
& =(\mathrm{b}-\mathrm{b}+\mathrm{a}) \underline{i}+(\mathrm{c}-\mathrm{c}) \underline{j}=\mathrm{a} \underline{i}+0 \underline{j} \underline{\mathrm{j}} \tag{ii}
\end{align*}
$$

$\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OA}}$

$$
=\quad(b-a-0) \underline{i}+(c-0) \underline{j}
$$

$$
\begin{equation*}
\overrightarrow{\mathrm{AD}}=(\mathrm{b}-\mathrm{a}) \underline{i}+\mathrm{c} \underline{j} \tag{iii}
\end{equation*}
$$

$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}=(\mathrm{b}-\mathrm{a}) \underline{i}+(\mathrm{c}-0) \underline{j}$
$\overrightarrow{\mathrm{BC}}=(\mathrm{b}-\mathrm{a}) \underline{i}+\mathrm{c} \underline{j}$ （iv）
from（i）（ii）（iii）\＆（iv）
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{DC}}$ and $\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{BC}}$ Shows ABCD is a parallelogram.
Q. 11 If $\overrightarrow{A B}=\overrightarrow{C D}$. Find coordinates of the point A when B, C, D are (1, 2), (-2, 5), $D(4,11)$ respectively.

Solution:

Let Coordinates of A be (x, y)
$\mathrm{A}(\mathrm{x}, \mathrm{y}), \quad \mathrm{B}(1,2), \quad \mathrm{C}(-2,5), \quad \mathrm{D}(4,11)$
i.e.; $\overrightarrow{A B}=\overrightarrow{C D}$
$\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OC}}$
$(1-\mathrm{x}) \underline{i}+(2-\mathrm{y}) \underline{\mathrm{j}}=(4+2) \underline{i}+(11-5) \underline{\mathrm{j}}$
By comparing
$1-x=6, \quad 2-y=6$
$1-6=x, \quad-y=6-2$
$\Rightarrow \quad x=-5 \quad y=-4$
Hence required point is $(-5,-4)$
Q. 12 Find the position vector of the point of division of the line segments joining the following pair of points.

Formula
$\underline{\mathbf{r}}=\frac{\mathbf{q} \underline{\mathbf{a}}+\mathbf{P} \underline{\mathbf{b}}}{\mathbf{p}+\mathbf{q}}$
(i) Point C with position vector $2 \underline{i}-\mathbf{3} \underline{j}$ and point D with position vector $3 \underline{i}+2 \underline{j}$ in ratio 4:3.
(Lahore Board 2009)

Solution:1

Let the position vector of the required point P be $\underline{\mathrm{r}}$ which divides the points C and D in ratio 4:3 By ratio formula

$$
\begin{aligned}
& \underline{\mathrm{r}}=\frac{\mathrm{Pb}+\mathrm{qa}}{\mathrm{P}+\mathrm{q}} \\
&= \frac{3(2 \underline{i}-3 \underline{\mathrm{j}})+4(3 \underline{i}+2 \underline{\mathrm{j}})}{4+3}=\frac{6 \underline{i}-9 \underline{\mathrm{j}}+12 \underline{i}+8 \underline{\mathrm{j}}}{7}=\frac{18 \underline{i}-\underline{\mathrm{j}}}{7}=\frac{18}{7} \underline{i}-\frac{1}{7} \underline{\mathrm{j}}
\end{aligned}
$$

(ii) Point E with position vector $5 \underline{i}$ and point F with position vector $4 \underline{i}+\underline{\mathbf{j}}$ in ratio 2:5.

Solution:

Let the position vector of point P be $\underline{\mathrm{r}}$ which divides the points $\mathrm{E} \& \mathrm{~F}$ in ratio 2:5.

By ratio formula

$$
\begin{gathered}
\underline{\mathrm{r}}=\frac{\mathrm{P} \underline{\mathrm{~b}}+\mathrm{q} \underline{\mathrm{a}}}{\mathrm{P}+\mathrm{q}} \\
\underline{\mathrm{r}}=\frac{5(5 \underline{i})+2(4 \underline{i}+\underline{\mathrm{j}})}{2+5}=\frac{25 \underline{i}+8 \underline{i}+2 \underline{\mathrm{j}}}{7}=\frac{33 \underline{i}+2 \underline{\mathrm{j}}}{7}=\frac{33}{7} \underline{i}+\frac{2}{7} \underline{\mathrm{j}} \quad \text { Ans. }
\end{gathered}
$$

Q. 14 Prove that the line segment joining the mid points of two sides of a triangle is parallel to the third side and half as long.
(Lahore Board 2011)

Solution:

Let ABC be any triangle and Let $\mathrm{E} \& \mathrm{~F}$ be the mid points of the two sides $A C \& B C$ respectively. Let $\underline{a}, \underline{b}$, and \underline{c} be position vector of A, B and C . Therefore position vectors of $E \& F$ are $\left(\frac{\underline{a}+\underline{c}}{2}\right)$ and $\left(\frac{b+\underline{c}}{2}\right)$ respectively.

We have to show that (i) $\overrightarrow{\mathrm{AB}}$ is parallel to $\overrightarrow{\mathrm{EF}}$
(ii) $\frac{1}{2} \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{EF}}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}$
$\overrightarrow{\mathrm{AB}}=\underline{\mathrm{b}}-\underline{\mathrm{a}}$
TALEBMCITY.COV
$\overrightarrow{\mathrm{EF}}=\overrightarrow{\mathrm{OF}}-\overrightarrow{\mathrm{OE}}$
$=\quad \underline{\underline{\mathrm{b}}+\underline{\underline{c}}} 2-\frac{\underline{a}+\underline{c}}{2}=\frac{\underline{\mathrm{c}}+\underline{\mathrm{c}}-\underline{a}-\underline{\underline{c}}}{2}=\frac{\underline{\mathrm{b}}-\underline{\mathrm{a}}}{2}$
$\overrightarrow{\mathrm{EF}}=\frac{1}{2}(\underline{\mathrm{~b}}-\underline{\mathrm{a}}) \quad=\frac{1}{2} \overrightarrow{\mathrm{AB}}$ using (i)
$\overrightarrow{\mathrm{EF}} \quad=\quad \lambda \overrightarrow{\mathrm{AB}}$ where $\lambda=\frac{1}{2}$.
Hence $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{EF}}$ are parallel \& half as long. Hence proved.
Q. 15 Prove that the line segments joining the mid points of the sides of a quadrilateral taken in order form a parallelogram.
(Gujranwala Board 2007, Lahore Board 2009)

Solution:

Let ABCD be any quadrilateral. Let $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ be mid points of the sides, $\underline{\mathrm{a}}, \underline{\mathrm{b}}, \underline{\mathrm{c}} \& \underline{\mathrm{~d}}$ are the position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively. The position vectors of E , F, G, \& H are $\frac{\underline{\underline{a}+\underline{b}}}{2}, \frac{\underline{b}+\underline{c}}{2}, \frac{\underline{c}+\underline{d}}{2} \&$ $\frac{\mathrm{a}+\underline{\mathrm{d}}}{2}$ respectively.

We have to prove that EFGH is a parallelogram.

$$
\begin{align*}
& \overrightarrow{\mathrm{EF}}=\overrightarrow{\mathrm{OF}}-\overrightarrow{\mathrm{OE}} \\
& \begin{array}{l}
=\quad \mathrm{OF}-\mathrm{OE} \\
=\quad \frac{\underline{\mathrm{b}}+\underline{\mathrm{c}}}{2}-\frac{\underline{a}+\underline{b}}{2}
\end{array} \\
& \overrightarrow{\mathrm{EF}} \quad=\quad \frac{\underline{\mathrm{b}}+\underline{\mathrm{c}}-\underline{\mathrm{a}}-\underline{\mathrm{b}}}{2}=\frac{\underline{\mathrm{c}-\underline{\mathrm{a}}}}{2} \text {........(i) } \\
& \overrightarrow{\mathrm{HG}}=\overrightarrow{\mathrm{OG}}-\overrightarrow{\mathrm{OH}} \\
& =\frac{\underline{c}+\mathrm{d}}{2}-\frac{\mathrm{a}+\mathrm{d}}{2} \square A L=3 \mathrm{CDM.0OM} \\
& =\quad \frac{\underline{\mathrm{c}}+\underline{\mathrm{d}}-\underline{\mathrm{a}}-\underline{\mathrm{d}}}{2}=\frac{\underline{\mathrm{c}}-\underline{\mathrm{d}}}{2} \tag{ii}\\
& \overrightarrow{\mathrm{FG}}=\overrightarrow{\mathrm{OG}}-\overrightarrow{\mathrm{OF}} \\
& =\quad \frac{\underline{\mathrm{c}}+\underline{\mathrm{d}}}{2}-\frac{\underline{\mathrm{b}}+\mathrm{c}}{2} \\
& \overrightarrow{\mathrm{FG}}=\frac{\underline{\mathrm{c}}+\underline{\underline{\mathrm{d}}-\underline{\mathrm{b}}-\underline{\mathrm{c}}}}{2}=\frac{\underline{\mathrm{d}}-\underline{\underline{\mathrm{b}}}}{2} \tag{iii}\\
& \overrightarrow{\mathrm{EH}}=\overrightarrow{\mathrm{OH}}-\overrightarrow{\mathrm{OE}} \\
& =\quad \frac{\underline{a}+\underline{d}}{2}-\frac{\underline{a}+\underline{b}}{2}=\frac{\underline{a}+\underline{d}-\underline{a}-\underline{b}}{2}=\frac{\underline{d}-\underline{b}}{2} \tag{iv}
\end{align*}
$$

from (i), (ii), (iii) \& (iv)

$$
\overrightarrow{\mathrm{EF}}=\overrightarrow{\mathrm{HG}} \text { and } \overrightarrow{\mathrm{EH}}=\overrightarrow{\mathrm{FG}}
$$

Shows EFGH is a parallogram.

