EXERCISE 7.2

Q. 1 Let $A=(2,5), B(-1,1), C(2,-6)$ Find (i) $\overrightarrow{A B}$

Solution:

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
& =(-1-2) \underline{i}+(1-5) \underline{j} \quad=-3 \underline{i}-4 \underline{j}
\end{aligned}
$$

(ii) $\quad \mathbf{2} \overrightarrow{\mathrm{AB}}-\overrightarrow{\mathbf{C B}}$

Solution:

$$
\begin{aligned}
& \begin{aligned}
& \overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{CB}} \\
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
& =-3 \underline{i}-4 \underline{j} \\
\overrightarrow{\mathrm{CB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OC}} \\
& =(-1-2) \underline{i}+(1+6) \underline{j} \\
& =\quad-3 \underline{i}+7 \underline{j} \quad \text { and } \\
2 \overrightarrow{\mathrm{AB}} & \overrightarrow{\mathrm{CB}}=2(-3 \underline{i}-4 \underline{j})-(-3 \underline{i}+7 \underline{j}) \\
& =\quad-6 \underline{i}-8 \underline{j}+3 \underline{i}-7 \underline{j} \quad=-3 \underline{i}-15 \underline{j} \\
\text { (iii) } & 2 \overrightarrow{\mathrm{CB}}-2 \overrightarrow{\mathrm{CA}}
\end{aligned}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
\overrightarrow{\mathrm{CB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OC}} \\
& =(-1-2) \underline{i}+(1+6) \underline{j}=-3 \underline{i}+7 \underline{j} \\
\overrightarrow{\mathrm{CA}} & =\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OC}} \\
& =(2-2) \underline{i}+(5+6) \underline{j}=0 \underline{i}+11 \underline{j} \\
2 \overrightarrow{\mathrm{CB}}-2 \overrightarrow{\mathrm{CA}} & =2(\overrightarrow{\mathrm{CB}}-\overrightarrow{\mathrm{CA}}) \\
& =2(-3 \underline{i}+7 \underline{j}-0 \underline{i}-11 \underline{j})=2(-3 \underline{i}-4 \underline{j})=-6 \underline{i}-8 \underline{j}
\end{aligned}
$$

Q. 2 Let $\underline{\mathbf{u}}=\underline{i}+2 \underline{\mathbf{j}}-\underline{\mathbf{k}}, \underline{\mathbf{v}}=\mathbf{3} \underline{i}-2 \underline{\mathbf{j}}+2 \underline{\mathrm{k}}$
$\underline{w}=5 \underline{i}-\mathbf{j}+3 \underline{k}$. Find the indicated vector or number
(i) $\underline{\mathbf{u}}+2 \underline{\mathbf{v}}+\underline{\mathbf{w}}$

Solution:

$$
\begin{aligned}
& \underline{\mathrm{u}}+2 \underline{\mathrm{v}}+\underline{\mathrm{w}} \\
& = \\
& (\underline{i}+2 \underline{\mathrm{j}}-\underline{\mathrm{k}})+2(3 \underline{i}-2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}})+5 \underline{i}-\underline{\mathrm{j}}+3 \underline{\mathrm{k}} \\
& = \\
& \underline{i}+2 \underline{\mathrm{j}}-\underline{\mathrm{k}}+6 \underline{i}-4 \underline{\mathrm{j}}+4 \underline{\mathrm{k}}+5 \underline{\mathrm{i}}-\underline{\mathrm{j}}+3 \underline{\mathrm{k}} \\
& = \\
& 12 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}+6 \underline{\mathrm{k}}
\end{aligned}
$$

(ii) $\underline{\mathbf{v}}-\mathbf{3 w}$

Solution:

Solution:

$$
|3 \underline{v}+\underline{w}|
$$

$3 \underline{v}+\underline{w}$

$$
=3(3 \underline{i}-2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}})+5 \underline{i}-\underline{\mathrm{j}}+3 \underline{\mathrm{k}}
$$

$$
=9 \underline{i}-6 \underline{\mathrm{j}}+6 \underline{\mathrm{k}}+5 \underline{i}-\underline{\mathrm{j}} \underline{+}+3 \underline{\mathrm{k}}
$$

$$
=14 \underline{i}-7 \underline{j}+9 \underline{k}
$$

$$
|3 \underline{v}+\underline{w}|=\sqrt{(14)^{2}+(-7)^{2}+(9)^{2}}
$$

$$
=\sqrt{196+49+81}
$$

$|3 \underline{v}+\underline{w}| \quad=\sqrt{326} \quad$ Ans.
Q. 3 Find the magnitude of the vector \underline{v} and write the direction cosines of \underline{v}.
(i) $\underline{\mathbf{v}}=2 \underline{i}+3 \underline{\mathbf{j}}+4 \underline{\mathbf{k}}$

Solution:

$$
\begin{gathered}
\underline{\mathrm{v}}=2 \underline{i}+3 \underline{\mathrm{j}}+4 \underline{\mathrm{k}} \\
|\underline{\mathrm{v}}| \quad=\quad \sqrt{(2)^{2}+(3)^{2}+(4)^{2}}=\sqrt{4+9+16}=\sqrt{29}
\end{gathered}
$$

direction cosines are

$$
\left[\frac{2}{\sqrt{29}}, \frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}}\right] \quad \text { Ans. }
$$

$$
\begin{aligned}
& \underline{v}-3 \underline{w} \\
& =3 \underline{i}-2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}-3(5 \underline{i}-\underline{\mathrm{j}}+3 \underline{\mathrm{k}}) \\
& =3 \underline{i}-2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}-15 \underline{i}+3 \underline{\mathrm{j}}-9 \underline{\mathrm{k}} \quad=-12 \underline{i}+\underline{\mathrm{j}}-7 \underline{\mathrm{k}}
\end{aligned}
$$

(ii) $\quad \underline{\mathbf{v}}=\underline{i}-\underline{\mathbf{j}}-\underline{\mathbf{k}}$

Solution:

$$
\begin{aligned}
& \underline{\mathbf{v}}=\underline{i}-\underline{\mathbf{j}}-\underline{\mathbf{k}} \\
& |\underline{\mathrm{v}}|=\sqrt{(1)^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{1+1+1}=\sqrt{3}
\end{aligned}
$$

Direction cosines are

$$
\left[\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right] \quad \text { Ans. }
$$

(iii) $\underline{\mathbf{v}}=4 \underline{i}-\mathbf{5} \underline{\mathbf{j}}$

Solution:

$$
\begin{aligned}
& \underline{\mathbf{v}}=\mathbf{4} \boldsymbol{i}-\mathbf{5} \underline{\mathbf{j}} \\
& |\underline{\mathrm{v}}|=\sqrt{(4)^{2}+(-5)^{2}}=\sqrt{16+25}=\sqrt{41}
\end{aligned}
$$

Direction cosines are

$$
\left[\frac{4}{\sqrt{41}}, \frac{-5}{\sqrt{41}}, 0\right] \quad \text { Ans. }
$$

Q. 4 Find α, so that $|\alpha \underline{i}+(\alpha+1) \underline{j}+2 \underline{k}|=3$
(Gujranwala Board 2007)

Solution:

$$
\begin{aligned}
& |\alpha \underline{i}+(\alpha+1) \underline{j}+2 \underline{k}|=3 \\
& \sqrt{\alpha^{2}+(\alpha+1)^{2}+(2)^{2}}=3
\end{aligned}
$$

Taking square on both sides

$$
\alpha^{2}+\alpha^{2}+1+2 \alpha+4=9
$$

$$
2 \alpha^{2}+2 \alpha+5-9=0
$$

$$
2 \alpha^{2}+2 \alpha-4=0
$$

$$
\alpha^{2}+\alpha-2=0 \text { (Dividing throughout by } 2 \text {) }
$$

$$
\alpha^{2}+2 \alpha-\alpha-2=0
$$

$$
\alpha(\alpha+2)-1(\alpha+2)=0
$$

$$
(\alpha+2)(\alpha-1)=0
$$

$$
\alpha+2=0 \quad \alpha-1=0
$$

$\Rightarrow \quad \alpha=-2 \quad, \quad \alpha=1 \quad$ Ans
Q. 5 Find a unit vector in the direction of $\underline{v}=\underline{i}+2 \underline{\mathbf{j}}-\underline{\mathbf{k}}$

Solution:

$$
\begin{array}{ll}
|\underline{\mathrm{v}}| & \underline{\mathrm{v}}=\underline{i}+2 \underline{\mathrm{j}}-\underline{\mathrm{k}} \\
= & \sqrt{(1)^{2}+(2)^{2}+(-1)^{2}}=\sqrt{1+4+1}=\sqrt{6}
\end{array}
$$

Required unit vector is

$$
\hat{\mathrm{v}} \quad=\frac{\underline{\underline{\mathrm{v}}}}{|\underline{\mathrm{v}}|}=\frac{\underline{i}+2 \underline{\mathrm{j}}-\underline{\mathrm{k}}}{\sqrt{6}}
$$

$$
=\frac{1}{\sqrt{6}} \underline{i}+\frac{2}{\sqrt{6}} \underline{j}-\frac{1}{\sqrt{6}} \underline{k}
$$

Q. 6 If $\underline{\mathbf{a}}=3 \underline{i}-\underline{\mathbf{j}}-4 \underline{\mathbf{k}}, \underline{b}=-2 \underline{i}-4 \underline{\mathbf{j}}-3 \underline{k} \& \underline{\mathrm{c}}=\underline{i}+2 \underline{\mathbf{j}}-\underline{k}$. Find a unit vector parallel to $3 \underline{a}-2 \underline{b}+4 \underline{c}$
(Gujranwala Board 2004)

Solution:

3a	$3(3 \underline{i}-\underline{\mathrm{j}}-4 \underline{\mathrm{k}})=9 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}-12 \underline{\mathrm{k}}$
2b	$2(-2 \underline{i}-4 \underline{\mathrm{j}}-3 \underline{\mathrm{k}})=-4 \underline{i}-8 \underline{\mathrm{j}}-6 \underline{\mathrm{k}}$
4c	$4(\underline{i}+2 \underline{\mathrm{j}}-\underline{\mathrm{k}})=4 \underline{i}+8 \underline{\mathrm{j}}-4 \underline{\mathrm{k}}$
Let $\mathrm{v}^{\text {}}$	$\begin{aligned} & 3 \underline{\mathrm{a}}-2 \underline{\mathrm{~b}}+4 \underline{\mathrm{c}}=9 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}-12 \underline{\mathrm{k}}-(-4 \underline{i}-8 \underline{\mathrm{j}}-6 \mathrm{k})+4 \underline{i} \underline{\mathrm{k}}+8 \underline{\mathrm{j}}-4 \underline{\mathrm{k}} \\ & 9 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}-12 \underline{\mathrm{k}}+4 \underline{i}+8 \underline{\mathrm{j}}+6 \underline{\mathrm{k}}+4 \underline{i}+8 \underline{\mathrm{j}}-4 \underline{\mathrm{k}} \end{aligned}$
v =	$17 \underline{i}+13 \mathrm{j}-10 \mathrm{k}$
Now $\mid \underline{\mathrm{v}}$ \| $=$	$\sqrt{(17)^{2}+(13)^{2}+(-10)^{2}}=\sqrt{289+169+100}=\sqrt{558}$
$\hat{\mathrm{v}}$	$\frac{\underline{\mathrm{v}}}{\|\underline{\mathrm{v}}\|}=\frac{17 \underline{i}+13 \dot{\mathrm{j}}-10 \underline{\mathrm{k}}}{\sqrt{558}}=\frac{17}{\sqrt{558}} \underline{i}+\frac{13}{\sqrt{558}} \underline{\mathrm{j}}-\frac{10}{\sqrt{558}} \underline{\mathrm{k}} \quad \text { Ans. }$

Q. 7 Find a vector whose

(i) magnitude is 4 and is parallel to $2 \underline{i}-3 \underline{j}+6 \underline{k}$

Solution:

Let $\underline{\mathrm{v}}=2 \underline{i}-3 \underline{\mathrm{j}}+6 \underline{\mathrm{k}}$
$|\underline{\mathrm{v}}|^{-}=\sqrt{(2)^{2}+(-3)^{2}+(6)^{2}}=\sqrt{4+9+36}=\sqrt{49}=7$
Let \underline{u} be a vector parallel to \underline{v}, then
$\underline{\mathrm{u}} \quad=\quad \frac{\underline{\mathrm{v}}}{|\underline{\mathrm{v}}|}=\frac{2 \underline{i}-3 \mathrm{j}+6 \underline{\mathrm{k}}}{7}$ (It is a vector whose magnitude is 1 and parallel to $\underline{\mathrm{v}}$) Required vector
$4 \underline{\mathrm{u}}=4\left(\frac{2 \underline{i}-3 \dot{\mathrm{j}}+6 \underline{\mathrm{k}}}{7}\right)=\frac{8}{7} \underline{i}-\frac{12}{7} \underline{\mathrm{j}}+\frac{24}{7} \underline{\mathrm{k}} \quad$ Ans.
(ii) magnitude is $\mathbf{2}$ and is parallel to $-\underline{i}+\underline{\mathbf{j}}+\underline{\mathbf{k}}$
(Lahore Board 2006)

Solution:

Let $\underline{\mathrm{v}}=-\underline{i}+\underline{\mathrm{j}}+\underline{\mathrm{k}}$
$|\underline{\mathrm{v}}|^{-}=\quad \sqrt{(-1)^{2}+(1)^{2}+(1)^{2}}=\sqrt{3}$
Let $\underline{\mathrm{u}}$ is vector parallel to $\underline{\mathrm{v}}$
$\underline{\mathrm{u}} \quad=\quad \frac{\underline{\mathrm{v}}}{|\underline{\mathrm{v}}|}=\frac{-\underline{i}+\overline{\mathrm{i}}+\underline{\mathrm{k}}}{\sqrt{3}}$

Required vector
$2 \underline{\mathrm{u}}=\frac{2(-\underline{i}+\underline{\mathrm{j}}+\underline{\mathrm{k}})}{\sqrt{3}}=\frac{-2}{\sqrt{3}} \underset{i}{ }+\frac{2}{\sqrt{3}} \underline{\mathrm{j}}+\frac{2}{\sqrt{3}} \underline{\mathrm{k}}$
Ans.
Q. $8 \quad$ If $\underline{\mathbf{u}}=2 \underline{i}+3 \underline{\mathbf{j}}+4 \underline{\mathbf{k}}, \underline{\mathbf{v}}=-\underline{i}+\mathbf{3} \underline{\mathbf{j}}-\underline{\mathbf{k}}, \underline{\mathbf{w}}=\underline{\mathbf{i}}+\mathbf{6} \underline{\mathbf{j}}+\mathrm{Z} \underline{\mathbf{k}}$ represents the sides of a triangle. Find the value of \bar{Z}.

Solution:

It $\underline{u}, \underline{v} \& \underline{w}$ represents the sides of a triangle, then by vector addition $\underline{\mathrm{u}}+\underline{\mathrm{v}}=\underline{\mathrm{w}}$

$$
\begin{aligned}
& 2 \underline{i}+3 \underline{\mathrm{j}}+4 \underline{\mathrm{k}}+(-(-i \underline{i}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}})=\underline{\mathrm{i}}+6 \underline{\mathrm{j}}+\mathrm{Z} \underline{\mathrm{k}} \\
& 2 \underline{i}+3 \underline{\mathrm{j}}+4 \underline{\mathrm{k}}-\underline{i} \underline{+}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}}=\underline{\mathrm{i}}+6 \underline{\mathrm{j}}+\mathrm{Z} \underline{\mathrm{k}} \\
& \underline{i}+6 \underline{\mathrm{j}}+3 \underline{\mathrm{k}}=\underline{i}+6 \underline{\mathrm{j}}+\mathrm{Z} \underline{\mathrm{k}}
\end{aligned}
$$

By comparing
$\mathrm{Z}=3 \quad$ Ans.

Q. 9 The position vectors of the points A, B, C and D are $2 \underline{i}-\underline{j}+\underline{k}, 3 \underline{i}+\underline{j}$, $2 \underline{i}+4 \underline{j}-2 \underline{k}$ and $-\underline{i}-2 \underline{j}+\underline{k}$ respectively. Show that $\overrightarrow{A B}$ is parallel to $\overrightarrow{C D}$.

Solution:

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
&=(3-2) \underline{i}+(1+1) \underline{j}+(0-1) \underline{k} \\
& \overrightarrow{\mathrm{AB}}=\underline{i}+2 \underline{j}-\underline{\mathrm{k}} \\
& \overrightarrow{\mathrm{CD}}=\text { Position vector of } \mathrm{D}-\text { Position vector of } \mathrm{C} \\
&=(-1-2) \underline{i}+(-2-4) \underline{j}+(1+2) \underline{k} \\
&=-3 \underline{i}-6 \underline{j}+3 \underline{\mathrm{k}} \\
& \overrightarrow{\mathrm{CD}}=-3(\underline{i}+2 \underline{j}-\underline{\mathrm{k}}) \\
& \overrightarrow{\mathrm{CD}}=-3 \overrightarrow{\mathrm{AB}} \\
& \overrightarrow{\mathrm{CD}} \\
& \text { Hence } \overrightarrow{\mathrm{AB}} \text { is parallel to } \overrightarrow{\mathrm{CD}} .
\end{aligned}
$$

Q. 10 Two vectors $\underline{\mathbf{u}} \boldsymbol{\&} \underline{\mathbf{w}}$ in space are parallel, if there is a scalar \mathbf{c} such that $\underline{\mathbf{v}}=\mathbf{c w}$. The vectors point in the same direction if $\mathbf{c}>\mathbf{0}$ and the vector point in the opposite direction if $\mathbf{c}<0$
(a) Find two vectors of length 2 parallel to vector $\underline{v}=2 \underline{i}-4 \underline{j}+4 \underline{k}$

Solution:

$$
\begin{aligned}
\underline{\mathrm{v}} & =2 \underline{\mathrm{i}}-4 \underline{\mathrm{j}}+4 \underline{\mathrm{k}} \\
& \underline{|\underline{\mathrm{v}}|} \\
\Rightarrow \quad & \sqrt{(2)^{2}+(-4)^{2}+(4)^{2}}=\sqrt{4+16+16}=\sqrt{36}=6 \\
\Rightarrow \quad \hat{\mathrm{v}} & =\frac{\underline{\mathrm{v}}}{|\underline{\mathrm{v}}|}=\frac{2 \underline{i}-4 \underline{\mathrm{j}}+4 \underline{\mathrm{k}}}{6}=\frac{2(\underline{i}-2 \underline{\mathrm{j}}+2 \underline{k})}{6}=\frac{i-2 \underline{\mathrm{j}}+2 \underline{k}}{3}
\end{aligned}
$$

$\therefore \quad$ The two vectors whose length is 2 and parallel to $\hat{\mathrm{v}}$ are $2 \hat{\mathrm{v}} \&-2 \hat{\mathrm{v}}$
i.e; $\quad 2 \hat{\mathrm{v}} \quad=\frac{2}{3}(\underline{\mathrm{i}}-2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}})=\frac{2}{3} \underline{i}-\frac{4}{3} \underline{\mathrm{j}}+\frac{4}{3} \underline{\mathrm{k}} \quad$ Ans.
$-2 \hat{\mathrm{v}}=\frac{-2}{3}(\underline{i}-2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}})=\frac{-2}{3} \underline{\mathrm{i}}+\frac{4}{3} \underline{\mathrm{j}}-\frac{4}{3} \underline{\mathrm{k}} \quad$ Ans.
(b) Find the constant a so that the vectors $\underline{v}=\underline{i}-\mathbf{3} \underline{j}+4 \underline{k}$ and $\underline{w}=\mathbf{a} \underline{i}+9 \underline{j}-12 \underline{k}$ are parallel.
(Gujranwala Board 2004)

Solution:

Since $\underset{\sim}{v} \& \underline{w}$ are parallel so
$\underline{\mathrm{w}} \quad=\mathrm{cv}$
$\mathrm{a} \underline{i}+9 \underline{\mathrm{j}}-12 \underline{\mathrm{k}}=\mathrm{c}(\underline{i}-3 \underline{\mathrm{j}}+4 \underline{\mathrm{k}})$
$\mathrm{a} \underline{i}+9 \underline{\mathrm{j}}-12 \underline{\mathrm{k}}=\mathrm{c} \underline{i}-3 \mathrm{c} \underline{\mathrm{j}}+4 \underline{\mathrm{ck}}$
By comparing

$$
\begin{array}{lll}
\mathrm{a} & =\mathrm{c}, & 9=-3 \mathrm{c}, \\
\Rightarrow \quad \frac{9}{-3}=\mathrm{c} & \Rightarrow \mathrm{c}=-3 \\
\mathrm{a}=-3 & & \text { Ans. }
\end{array}
$$

(c) Find a vector of length 5 in the direction opposite that of $\underline{v}=\underline{i}-\mathbf{2} \underline{\mathbf{j}}+\mathbf{3 k}$.
(Lahore Board 2004)

Solution:

$$
\begin{array}{ll}
\underline{\mathrm{v}} & =\underline{i}-2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}} \\
|\underline{\mathrm{v}}| & =\sqrt{(1)^{2}+(-2)^{2}+(3)^{2}}=\sqrt{1+4+9}=\sqrt{14} \\
\hat{\mathrm{v}} & =\frac{\underline{\mathrm{v}}}{|\underline{\mathrm{v}}|}=\frac{\underline{i}-2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}}}{\sqrt{14}}
\end{array}
$$

$\therefore \quad$ The vector of length 5 in opposite direction of \underline{v} is

$$
\begin{aligned}
& -5 \hat{\mathrm{v}}=\frac{-5}{\sqrt{14}}(\underline{i}-2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}}) \\
& \frac{-5}{\sqrt{14}} i+\frac{10}{\sqrt{14}} \underline{\mathrm{j}}-\frac{15}{\sqrt{14}} \mathrm{k}
\end{aligned}
$$

Ans.
(d) Find \mathbf{a} and \mathbf{b} so that the vectors $3 \underline{i}-\underline{\mathbf{j}}+4 \underline{\mathbf{k}}$ and $\mathbf{a} \underline{i}+\mathbf{b} \underline{j}-2 \underline{k}$ are parallel.

Solution:

$$
\begin{aligned}
& \text { Since } \underline{\mathrm{v}} \& \underline{\mathrm{w}} \text { are parallel so } \\
& \underline{\mathrm{w}} \quad=\mathrm{c} \\
& \underline{\mathrm{c}} \underline{\mathrm{i}}+\mathrm{b} \underline{\mathrm{~b}}-2 \underline{\mathrm{k}}=\mathrm{c}(3 \underline{i}-\underline{\mathrm{j}}+4 \underline{\mathrm{k}}) \\
& \mathrm{a} \underline{i}+\mathrm{b} \underline{\mathrm{j}}-2 \underline{\mathrm{k}}=3 \mathrm{c} \underline{i}-\mathrm{c} \underline{\mathrm{j}}+4 \underline{\mathrm{c}} \underline{\mathrm{k}}
\end{aligned}
$$

By comparing

$$
\begin{aligned}
& \mathrm{a}=3 \mathrm{c}, \quad \mathrm{~b}=-\mathrm{c}, \quad \begin{array}{l}
-2=4 \mathrm{c} \\
\\
\\
\frac{-2}{4}=\mathrm{c}
\end{array} \\
& \mathrm{~b}=-\mathrm{c} \frac{-1}{2}=\mathrm{c} \\
& \Rightarrow \quad \mathrm{~b}=\frac{1}{2} \quad \mathrm{a}=3 \mathrm{c} \quad \Rightarrow \mathrm{a}=3\left(\frac{-1}{2}\right) \Rightarrow a=\frac{-3}{2}
\end{aligned}
$$

Q. 11 Find the direction cosines for the given vectors.

$$
\text { (i) } \underline{\mathbf{v}}=3 \underline{i}-\underline{\mathbf{j}}+2 \underline{k}
$$

(Lahore Board 2007)

Solution:

$\begin{array}{ll}\underline{\mathrm{v}} & =3 \underline{i}-\underline{\mathrm{j}}+2 \underline{\mathrm{k}} \\ |\underline{\mathrm{v}}| & =\sqrt{(3)^{2}+(-1)^{2}+(2)^{2}}=\sqrt{9+1+4}=\sqrt{14}\end{array}$
Direction cosines are

$$
=\left[\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right]
$$

(ii) $\underline{\mathbf{v}}=\mathbf{6} \underline{i}-\mathbf{2} \underline{\mathbf{j}}+\underline{\mathbf{k}}$
(Lahore Board 2006)

Solution:

$$
\begin{array}{ll}
\underline{\mathrm{v}} & =6 \underline{i}-2 \underline{\mathrm{j}}+\underline{\mathrm{k}} \\
|\underline{\mathrm{v}}| & =\sqrt{(6)^{2}+(-2)^{2}+(1)^{2}}=\sqrt{36+4+1}=\sqrt{41}
\end{array}
$$

Direction cosines are $\quad=\left[\frac{6}{\sqrt{41}}, \frac{-2}{\sqrt{41}}, \frac{1}{\sqrt{41}}\right] \quad$ Ans.
(iii) $\quad \overrightarrow{P Q}$, where $\mathrm{P}(2,1,5) \& \mathrm{Q}=(1,3,1)$

Solution:

$$
\begin{aligned}
\overrightarrow{\mathrm{PQ}} & =\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}} \\
& =(1-2) \underline{i}+(3-1) \underline{\mathrm{j}}+(1-5) \underline{\mathrm{k}} \quad=\quad-\underline{i}+2 \underline{\mathrm{j}}-4 \underline{\mathrm{k}} \\
|\overrightarrow{\mathrm{PQ}}| & =\sqrt{(-1)^{2}+(2)^{2}+(-4)^{2}}=\sqrt{1+4+16}=\sqrt{21}
\end{aligned}
$$

Direction cosines are $\quad=\left[\frac{-1}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{-4}{\sqrt{21}}\right] \quad$ Ans.
Q. 12 Which of the following triples can be the direction angles of a single vector.
(i) $\mathbf{4 5}^{\circ}, \mathbf{4 5}^{\circ}, \mathbf{6 0}^{\circ}$

Solution:

If α, β, γ are direction angles of a vector, then it must satisfy $\cos ^{2} \alpha+\cos ^{2} \beta+$ $\cos ^{2} \gamma=1$
L.H.S.

$$
\begin{aligned}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma & =\left(\cos 45^{\circ}\right)^{2}+\left(\cos 45^{\circ}\right)^{2}+\left(\cos 60^{\circ}\right)^{2} \\
& =\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\frac{1}{2}+\frac{1}{4} \\
= & \frac{2+2+1}{4}=\frac{5}{4} \neq 1
\end{aligned}
$$

So given triples are not direction angles.
(ii) $\mathbf{3 0}^{\circ}, \mathbf{4 5}^{\circ}, \mathbf{6 0}^{\circ}$

Solution:

$$
\begin{aligned}
& \alpha=30^{\circ}, \beta=\mathbf{4 5}^{\circ}, \gamma=60^{\circ} \\
& =\quad \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma \\
& =\quad\left(\cos 30^{\circ}\right)^{2}+\left(\cos 45^{\circ}\right)^{2}+\left(\cos 60^{\circ}\right)^{2} \\
& =\quad\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{3}{4}+\frac{1}{2}+\frac{1}{4}=\frac{3+2+1}{4}=\frac{6}{4} \neq 1
\end{aligned}
$$

Hence given triples can not be direction angles.
(iii) $\mathbf{4 5}^{\circ}, \mathbf{6 0}^{\circ}, \mathbf{6 0}^{\circ}$

Solution:

$$
\begin{aligned}
& \alpha=45^{\circ}, \boldsymbol{\beta}=60^{\circ}, \gamma=60^{\circ} \\
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\left(\cos 45^{\circ}\right)^{2}+\left(\cos 60^{\circ}\right)^{2}+\left(\cos 60^{\circ}\right)^{2} \\
&=\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\frac{1}{4}+\frac{1}{4} \\
&=\frac{2+1+1}{4}=\frac{4}{4}=1
\end{aligned}
$$

$$
\text { As } \quad \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

Therefore, given triples can be direction angles of a vector.

The Scalar Product of Two vectors

Definition:

Let two non zero vectors $\underline{u} \& \underline{v}$ in the plane or in space, have same initial point. The dot product of \underline{u} and \underline{v}, written as $\underline{u} \cdot \underline{v}$, is defined by
$\underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=|\underline{\mathrm{u}}||\underline{\mathrm{v}}| \cos \theta$ where θ is angle between $\underline{\mathrm{u}} \& \underline{\mathrm{v}}$ and $0 \leq \theta \leq \pi$.

Orthogonal / Perpendicular vectors:

The two vectors $\underline{\mathbf{u}} \& \underline{\mathrm{v}}$ are orthogonal / perpendicular if and only if $\underline{\mathbf{u}} \cdot \underline{v}=0$
Remember:
(i) Dot product, inner product, scalar product are same.
(ii) $\underline{i} \cdot \underline{i}=\underline{\mathrm{j}} \cdot \underline{\mathrm{j}}=\underline{\mathrm{k}} \cdot \underline{\mathrm{k}}=1$
(iii) $\underline{i} \cdot \underline{\mathrm{j}}=\underline{\mathrm{j}} \cdot \underline{\mathrm{k}}=\underline{\mathrm{k}} \cdot \underline{i}=0$
(iv) Scalar product is commutative i.e., $\underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=\underline{\mathrm{v}} \cdot \underline{\mathrm{u}}$

EXERCISE 7.3

Q. 1 Find the Cosine of the angle θ between \underline{u} and \underline{v}.
(i) $\quad \underline{\mathbf{u}}=\mathbf{3} \underline{i}+\underline{\mathbf{j}}-\underline{\mathbf{k}} \quad \underline{\mathbf{v}}=\mathbf{2} \underline{i}-\underline{\mathbf{j}}+\underline{\mathbf{k}}$

Formula

$$
\cos \theta=\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}}{|\underline{\mathbf{u}}||\underline{\mathbf{v}}|}
$$

Solution:

$$
\begin{aligned}
& \underline{\mathrm{u}}=3 \underline{i}+\underline{\mathrm{j}}-\underline{\mathrm{k}} \quad, \quad \underline{\mathrm{v}}=2 \underline{i}-\underline{\mathrm{j}}+\underline{\mathrm{k}} \\
& \underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=(3 \underline{i}+\underline{\mathrm{j}}-\underline{\mathrm{k}}) \cdot(2 \underline{i}-\underline{\mathrm{j}}+\underline{\mathrm{k}}) \\
& \underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=6-1-1=4 \\
& \underline{\mathrm{u}} \mid \quad=\sqrt{(3)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{9+1+1}=\sqrt{11} \\
& |\underline{\mathrm{v}}| \quad=\sqrt{(2)^{2}+(-1)^{2}+(1)^{2}}=\sqrt{4+1+1}=\sqrt{6} \\
& \cos \theta=\frac{\underline{\mathrm{u}} \cdot \underline{\mathrm{v}}}{|\underline{\mathrm{u}}||\underline{v}|}=\frac{4}{\sqrt{11} \sqrt{6}}=\frac{4}{\sqrt{66}} \\
& \cos \theta=\frac{4}{\sqrt{66}} \quad \text { Ans. }
\end{aligned}
$$

