$$
\text { As } \quad \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

Therefore, given triples can be direction angles of a vector.

The Scalar Product of Two vectors

Definition:

Let two non zero vectors $\underline{u} \& \underline{v}$ in the plane or in space, have same initial point. The dot product of \underline{u} and \underline{v}, written as $\underline{u} \cdot \underline{v}$, is defined by
$\underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=|\underline{\mathrm{u}}||\underline{\mathrm{v}}| \cos \theta$ where θ is angle between $\underline{\mathrm{u}} \& \underline{\mathrm{v}}$ and $0 \leq \theta \leq \pi$.

Orthogonal / Perpendicular vectors:

The two vectors $\underline{\mathbf{u}} \& \underline{\mathrm{v}}$ are orthogonal / perpendicular if and only if $\underline{\mathbf{u}} \cdot \underline{v}=0$
Remember:
(i) Dot product, inner product, scalar product are same.
(ii) $\underline{i} \cdot \underline{i}=\underline{\mathrm{j}} \cdot \underline{\mathrm{j}}=\underline{\mathrm{k}} \cdot \underline{\mathrm{k}}=1$
(iii) $\underline{i} \cdot \underline{\mathrm{j}}=\underline{\mathrm{j}} \cdot \underline{\mathrm{k}}=\underline{\mathrm{k}} \cdot \underline{i}=0$
(iv) Scalar product is commutative i.e., $\underline{u} \cdot \underline{v}=\underline{v} \cdot \underline{u}$

EXERCISE 7.3

Q. 1 Find the Cosine of the angle θ between \underline{u} and \underline{v}
(i)

$$
\underline{\mathbf{u}}=3 \underline{i}+\underline{\mathbf{j}}-\underline{\mathbf{k}} \quad \underline{\mathbf{v}}=2 \boldsymbol{i}-\underline{\mathbf{j}}+\underline{\mathbf{k}}
$$

Formula

$$
\cos \theta=\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}}{|\underline{\mathbf{u}}||\underline{\mathbf{v}}|}
$$

Solution:

$$
\begin{aligned}
& \underline{\mathrm{u}}=3 \underline{i}+\underline{\mathrm{j}}-\underline{\mathrm{k}} \quad, \quad \underline{\mathrm{v}}=2 \underline{i}-\underline{\mathrm{j}}+\underline{\mathrm{k}} \\
& \underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=(3 \underline{i}+\underline{\mathrm{j}}-\underline{\mathrm{k}}) \cdot(2 \underline{i}-\underline{\mathrm{j}}+\underline{\mathrm{k}}) \\
& \underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=6-1-1=4 \\
& |\underline{\mathrm{u}}| \quad=\sqrt{(3)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{9+1+1}=\sqrt{11} \\
& |\underline{\mathrm{v}}| \quad=\sqrt{(2)^{2}+(-1)^{2}+(1)^{2}}=\sqrt{4+1+1}=\sqrt{6} \\
& \cos \theta=\frac{\underline{\mathrm{u}} \cdot \underline{\mathrm{v}}}{|\underline{\mathrm{u}}||\underline{v}|}=\frac{4}{\sqrt{11} \sqrt{6}}=\frac{4}{\sqrt{66}} \\
& \cos \theta=\frac{4}{\sqrt{66}} \quad \text { Ans. }
\end{aligned}
$$

(ii) $\underline{\mathbf{u}}=\underline{i}-3 \underline{\mathbf{j}}+4 \underline{\mathbf{k}} \quad, \underline{\mathbf{v}}=4 \underline{i}-\underline{\mathbf{j}}+3 \underline{\mathbf{k}}$

Solution:

$$
\begin{aligned}
& \underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=(\underline{i}-3 \underline{\mathrm{j}}+4 \underline{\mathrm{k}}) \cdot(4 \underline{i}-\underline{\mathrm{j}}+3 \underline{\mathrm{k}}) \\
&=4+3+12 \\
& \underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=19 \\
&|\underline{\mathrm{u}}|=\sqrt{(1)^{2}+(-3)^{2}+(4)^{2}}=\sqrt{1+9+16}=\sqrt{26} \\
& \underline{|\underline{v}|}=\sqrt{(4)^{2}+(-1)^{2}+(3)^{2}}=\sqrt{16+1+9}=\sqrt{26} \\
& \cos \theta=\underline{\mathrm{u}} \cdot \underline{\mathrm{v}} \\
&|\underline{\mathrm{u}}||\underline{\mathrm{v}}| \frac{19}{\sqrt{26} \sqrt{26}} \\
& \cos \theta=\frac{19}{26} \quad \text { Ans. } \\
& \text { (iii) } \underline{\mathbf{u}}=[-\mathbf{3}, \mathbf{5}], \underline{\mathbf{v}}=[\mathbf{6},-\mathbf{2}]
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \underline{\mathrm{u}}=-3 \underline{i}+5 \mathrm{j}, \quad \underline{\mathrm{v}}=6 \mathrm{i}-2 \underline{\mathrm{j}} \\
& \underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=(-3 \underline{i}+5 \underline{\mathrm{j}}) \cdot(6 \bar{i}-2 \underline{\mathrm{j}}) \\
&=-18-10 \\
& \underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=-28 \\
& \underline{\mid \mathrm{u}} \mid=\sqrt{(-3)^{2}+(5)^{2}}=\sqrt{9+25}=\sqrt{34} \\
&|\underline{\mathrm{v}}|=\sqrt{(6)^{2}+(-2)^{2}}=\sqrt{36+4}=\sqrt{40} \\
& \cos \theta=\frac{\underline{\mathrm{u}} \cdot \underline{\mathrm{v}}}{|\underline{\mathrm{u}}| \underline{\mathrm{v}} \mid} \\
& \cos \theta=\frac{-28}{\sqrt{34} \sqrt{40}}=\frac{-28}{\sqrt{34} \sqrt{10}}=\frac{-28}{\sqrt{2 \times 17} \sqrt{2 \times 5}}=\frac{-14}{2 \sqrt{85}} \\
& \cos \theta=\frac{-7}{\sqrt{85}} \quad \text { Ans. } \\
& \text { (iv) } \quad \underline{\mathbf{u}} \quad=[\mathbf{2 , - 3 , 1] , \quad \mathbf { v } = [\mathbf { 2 , 4 , 1 }]}
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
\underline{\mathrm{u}} & =2 \underline{i}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}} \quad, \quad \underline{\mathrm{v}}=2 \underline{i}+4 \underline{\mathrm{j}}+\underline{\mathrm{k}} \\
\underline{\mathrm{u}} \cdot \underline{\mathrm{v}} & =(2 \underline{i}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}}) \quad \cdot \quad(2 \underline{i}+4 \underline{\mathrm{j}}+\underline{\mathrm{k}}) \\
& =4-12+1 \\
\underline{\mathrm{u}} \cdot \underline{\mathrm{v}} & =-7 \\
|\underline{\mathrm{u}}| & =\sqrt{(2)^{2}+(-3)^{2}(1)^{2}}=\sqrt{4+9+1}=\sqrt{14} \\
|\underline{\mathrm{v}}| & =\sqrt{(2)^{2}+(4)^{2}+(1)^{2}}=\sqrt{4+16+1}=\sqrt{21}
\end{array}
$$

$$
\begin{aligned}
& \cos \theta=\frac{\underline{u} \cdot \underline{v}}{|\underline{u}||\underline{v}|} \\
& \cos \theta=\frac{-7}{\sqrt{14} \sqrt{21}}=\frac{-7}{\sqrt{2 \times 7 \times 3 \times 7}}=\frac{-7}{7 \sqrt{6}}=\frac{-1}{\sqrt{6}} \\
& \cos \theta=\frac{-1}{\sqrt{6}} \quad \text { Ans. }
\end{aligned}
$$

Q. 2 Calculate the projection of \underline{a} along \underline{b} and projection of \underline{b} along a when

(i) $\underline{\mathbf{a}}=\underline{\mathbf{i}}-\underline{\mathbf{k}}, \underline{\mathbf{b}}=\underline{\mathbf{j}}+\underline{\mathbf{k}}$

Solution:

Formula Projection of \underline{a} along $\underline{b}=\frac{\mathrm{a} \cdot \underline{b}}{|\underline{b}|}$
Project of \underline{b} along $\underline{a}=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}|}$
$\underline{\mathrm{a}} \quad=\underline{i}+0 \underline{\mathrm{j}}-\underline{\mathrm{k}} \quad, \quad \underline{\mathrm{b}}=0 \underline{i}+\underline{\mathrm{j}}+\underline{\mathrm{k}}$
$\underline{\mathrm{a}} \cdot \underline{\mathrm{b}}=(\underline{i}+0 \underline{\mathrm{j}}-\underline{\mathrm{k}}) \quad(0 \underline{i}+\underline{\mathrm{j}}+\underline{\mathrm{k}})$ 。
$=0+0-1$
$\underline{\mathrm{a}} \cdot \underline{\mathrm{b}}=-1$
$\overline{|a|}^{-}=\sqrt{(1)^{2}+0+(-1)^{2}}=\sqrt{1+1}=\sqrt{2}$
$|\underline{b}| \quad=\sqrt{(1)^{2}+(1)^{2}}=\sqrt{1+1}=\sqrt{2}$
Projection of \underline{a} along $\underline{b}=\frac{\underline{a}}{|\underline{b}|} \underline{\underline{b}}=\frac{-\sqrt{p}}{\sqrt{2}} \quad$. Ans.
And Projection of \underline{b} along $\underline{a}=\frac{\underline{a} \cdot \underline{b}}{\underline{|a|}}=\frac{-1}{\sqrt{2}} \quad$ Ans.
(ii) $\underline{\mathbf{a}}=3 \underline{i}+\underline{\mathbf{j}}-\underline{\mathbf{k}}, \quad \underline{\mathbf{b}}=2 \underline{i}-\underline{\mathbf{j}}+\underline{\mathbf{k}} \quad$ (Gujranwala Board 2004, 2007)

Solution:

$$
\begin{aligned}
& \underline{\mathrm{a}} \cdot \underline{\mathrm{~b}}=(3 \underline{i}+\underline{\mathrm{j}}-\underline{\mathrm{k}}) \cdot \quad(-2 \underline{i}-\underline{\mathrm{j}}+\underline{\mathrm{k}}) \\
& \underline{\mathrm{a}} \cdot \underline{\mathrm{~b}}=-6-1-1=-8 \\
& |\underline{\mathrm{a}}| \\
& \underline{\mathrm{b}} \mid \\
& \underline{\underline{\mathrm{b}} \mid}=\sqrt{(3)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{9+1+1}=\sqrt{11} \\
& (-2)^{2}+(-1)^{2}+(1)^{2}
\end{aligned} \sqrt{4+1+1}=\sqrt{6} .
$$

Projection of \underline{a} along $\underline{b}=\frac{\underline{a} \cdot \underline{b}}{|\underline{b}|}=\frac{-8}{\sqrt{6}}$ Ans.
Projection of \underline{b} along $\underline{a}=\frac{\underline{a} \cdot \underline{b}}{|\underline{b}|}=\frac{-8}{\sqrt{11}} \quad$ Ans.
Q. 3 Find a real number α so that the vectors $\underline{\mathbf{u}} \& \underline{\mathbf{v}}$ are perpendicular.
(i) $\underline{\mathbf{u}}=2 \alpha \underline{i}+\underline{\mathbf{j}}-\underline{\mathbf{k}} \quad \underline{\mathbf{v}}=\underline{i}+\alpha \underline{\mathbf{j}}+4 \underline{\mathbf{k}} \quad$ (Lahore Board 2010,11)

Solution:

Since $\underline{u} \& \underline{v}$ are perpendicular so

$$
\begin{aligned}
\underline{\mathrm{u}} \cdot \underline{\mathrm{v}}= & 0 \\
& (2 \alpha \underline{i}+\underline{\mathrm{j}}-\underline{\mathrm{k}}) \quad . \quad(\underline{i}+\alpha \underline{\mathrm{j}}+4 \underline{\mathrm{k}})=0 \\
& 2 \alpha+\alpha-4=0 \\
& 3 \alpha-4=0 \\
& \alpha=\frac{4}{3} \quad \text { Ans. }
\end{aligned}
$$

(i) $\underline{\mathbf{u}} \quad=\alpha \underline{i}+2 \alpha \underline{\mathbf{j}}-\underline{\mathbf{k}} \quad \underline{\mathbf{v}}=\underline{i}+\alpha \underline{\mathbf{j}}+3 \underline{\mathbf{k}} \quad$ (Lahore Board 2006)

Solution:

$\underline{\mathrm{u}} \quad=\alpha \underline{i}+2 \alpha \underline{\mathrm{j}}-\underline{\mathrm{k}} \quad, \quad \underline{\mathrm{v}}=\underline{i}+\alpha \underline{\mathrm{j}}+3 \underline{\mathrm{k}}$
Since $\underline{u} \& \underline{v}$ are perpendicular so

$$
\begin{aligned}
& \underline{\mathrm{u}} \cdot \underline{\mathrm{v}}=0 \\
& \quad(\alpha \underline{i}+2 \alpha \underline{j}-\underline{\mathrm{k}}) \\
& \alpha+2 \alpha^{2}-3=0 \\
& 2 \alpha^{2}+\alpha-3=0 \\
& 2 \alpha^{2}+3 \alpha-2 \alpha-3=0 \\
& \alpha(2 \alpha+3)-1(2 \alpha+3)=0 \\
& (\alpha-1)(2 \alpha+3)=0=0 \\
& \alpha-1=0 \quad, \quad 2 \alpha+3=0 \\
& \alpha=1 \quad, \quad \alpha=\frac{-3}{2} \quad \text { Ans. }
\end{aligned}
$$

Q. 4 Find the number Z so that the triangle with vertices $A(1,-1,0), B(-2,2,1)$ and $C(0,2, Z)$ is a right triangle with right angle at C.

Solution:

Given $\mathrm{A}(1,-1,0), \quad \mathrm{B}(-2,2,1), \quad \mathrm{C}(0,2, \mathrm{Z})$
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}$
$=\quad(0-1) \underline{i}+(2+1) \underline{j}+(\mathrm{Z}-0) \underline{\mathrm{k}}$
$\overrightarrow{\mathrm{AC}} \quad=\quad-\underline{i}+3 \underline{j}+\mathrm{Zk}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}$
$=\quad(0+2) \underline{i}+(2-2) \underline{j}+(\mathrm{Z}-1) \underline{\mathrm{k}}$
$\overrightarrow{\mathrm{BC}}=2 \underline{i}+0 \underline{j}+(\mathrm{Z}-1) \underline{\mathrm{k}}$
Since $\overrightarrow{A C} \& \overrightarrow{B C}$ are perpendicular
So,

$$
\begin{aligned}
& \overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BC}}=0 \\
& (-\underline{i}+3 \underline{j}+\mathrm{Zk}) \cdot(\underset{-}{\underline{i}}+0 \underline{j}+(\mathrm{Z}-1) \underline{k})=0 \\
& -2+0+\mathrm{Z}(\mathrm{Z}-1)=0 \\
& -2+\mathrm{Z}^{2}-\mathrm{Z}=0 \\
& \mathrm{Z}^{2}-\mathrm{Z}-2=0 \\
& \mathrm{Z}^{2}-2 \mathrm{Z}+\mathrm{Z}-2=0 \\
& \mathrm{Z}(\mathrm{Z}-2)+1(\mathrm{Z}-2)=0 \\
& (\mathrm{Z}-2)(\mathrm{Z}+1)=0 \\
& \Rightarrow \quad \mathrm{Z}-2=0 \quad \mathrm{Z}+1=0 \\
& \mathrm{Z}=2, \quad \mathrm{Z}=-1
\end{aligned}
$$

Q. 5 If V is a vector for which

$\underline{\mathrm{v}} \cdot \underline{i}=0 \quad \underline{\mathrm{v}} \cdot \underline{\mathbf{j}}=\mathbf{0}, \underline{\mathbf{v}} \cdot \underline{\mathbf{k}}=0$, find $\underline{\mathbf{v}}$
(Lahore Board 2009)
Solution:
Let $\underline{v}=x \underline{i}+y \underline{j}+z \underline{k} \ldots \ldots(1)(1)$

$$
\begin{aligned}
& \underline{\mathrm{v}} \cdot \underline{i}=0 \\
& (\mathrm{x} \underline{i}+\mathrm{y} \underline{\mathrm{j}}+\mathrm{z} \underline{\mathrm{k}}) \cdot(\underline{i})=0 \\
& \mathrm{x}=0
\end{aligned}
$$

Next

$$
\begin{aligned}
& \underline{\mathrm{v}} \cdot \underline{\mathrm{j}}=0 \\
& (\mathrm{x} \underline{i}+\mathrm{y} \underline{\mathrm{j}}+\mathrm{z} \underline{\mathrm{k}}) \cdot(0 \underline{i}+\underline{\mathrm{j}}+0 \underline{k})=0 \\
& 0+\mathrm{y}+0=0 \quad \Rightarrow \quad \mathrm{y}=0 \\
& \\
& \underline{\mathrm{v}} \cdot \underline{\mathrm{k}}=0 \\
& \\
& (\mathrm{x} \underline{i}+\mathrm{y} \underline{\mathrm{j}}+\mathrm{z} \underline{\mathrm{k}}) \cdot(0 \underline{i}+\underline{\mathrm{j}}+0 \underline{k})=0 \\
& \\
& 0+0+\mathrm{z}=0 \\
& \\
& \mathrm{z}=0
\end{aligned}
$$

Substitute all values in (1)

$$
\begin{aligned}
& \underline{\mathrm{v}} \\
& \Rightarrow \quad \underline{\mathrm{v}}=0 \underline{i}+0 \underline{\mathrm{j}}+0 \mathrm{k} \\
& \text { (Null vector) } \quad \text { Ans. }
\end{aligned}
$$

Q.6(i) Show that the vectors $\mathbf{3} \underline{i}-\mathbf{2} \underline{\mathbf{j}}+\underline{\mathbf{k}}, \underline{i}-\mathbf{3} \underline{\mathbf{j}}+5 \underline{k} \underset{\sim}{\boldsymbol{i}} \underline{\mathbf{i}}+\underline{\mathbf{j}}-\mathbf{4} \underline{\mathbf{k}}$ form a right angle triangle.

Solution:

$$
\begin{aligned}
\text { Let } \underline{\mathrm{u}} & =3 \underline{i}-2 \underline{\mathrm{j}}+\underline{\mathrm{k}}, \quad \underline{\mathrm{v}}=\underline{i}-3 \underline{\mathrm{j}}+5 \underline{\mathrm{k}}, \quad \underline{\mathrm{w}}=2 \underline{i}+\underline{\mathrm{j}}-4 \underline{\mathrm{k}} \\
\underline{\mathrm{v}}+\underline{\mathrm{w}} & =\underline{i}-3 \underline{\mathrm{j}}+5 \underline{\mathrm{k}}+2 \underline{i}+\underline{\mathrm{j}}-4 \underline{\mathrm{k}} \\
& =3 \underline{i}-2 \underline{\mathrm{j}}+\underline{\mathrm{k}} \\
\underline{\mathrm{v}}+\underline{\mathrm{w}} & =\underline{\mathrm{u}}
\end{aligned}
$$

Hence $\underline{u}, \underline{v}$, \underline{w} from a triangle

$$
\begin{aligned}
\underline{\mathrm{u}} \cdot \underline{\mathrm{w}} & =(3 \underline{i}-2 \underline{\mathrm{j}}+\underset{\mathrm{k}}{\underline{\mathrm{k}}}) \cdot(2 \underline{i}+\underline{\mathrm{j}}-4 \underline{\mathrm{k}}) \\
& =6-2-4=0
\end{aligned}
$$

$\Rightarrow \quad \underline{\mathrm{u}}$ and w are perpendicular to each other.
Therefore, given triangle is right angled triangle.
(ii) Show that the set of points $P(1,3,2), Q(4,1,4)$. $R(6,5,5)$ from a right triangle.

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{aligned}
\overrightarrow{\mathrm{PQ}} & =\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}} \\
& =(4-1) \underline{i}+(1-3) \dot{j}+(4-2) \underline{\mathrm{k}}=3 \underline{i}-2 \underline{j}+2 \underline{k}
\end{aligned} \\
& \overrightarrow{\mathrm{QR}}=(6-4) \underline{i}+(5-1) \underline{j}+(5-4) \underline{\mathrm{k}}=2 \underline{i}+4 \underline{\mathrm{j}}+\underline{\mathrm{k}} \\
& \overrightarrow{\mathrm{PR}} \quad=(6-1) \underline{i}+(5-3) \underline{\underline{c}} \underset{(5-2) \underline{\mathrm{k}}=5 \underline{i}+2 \underline{j}+3 \mathrm{k}}{\underline{k}} \\
& \overrightarrow{\mathrm{QR}}=\overrightarrow{\mathrm{PR}} \\
& \text { Now } \overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{QR}}=3 \underline{i}-2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}+2 \underline{i}+4 \underline{\mathrm{j}}+\underline{\mathrm{k}} \\
& =5 \underline{i}+2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}} \\
& \overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{QR}}=\overrightarrow{\mathrm{PR}} \\
& \text { Thus, } \\
& \mathrm{P}, \mathrm{Q}, \mathrm{R} \text { from a triangle } \\
& \overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{QR}}=(3 \underline{i}-2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}) \cdot(2 \underline{i}+4 \underline{\mathrm{j}}+\underline{\mathrm{k}}) \\
& =6-8+2=0 \\
& \text { Therefore } \overrightarrow{P Q} \& \overrightarrow{Q R} \text { are perpendicular to each other } \\
& \text { Thus, given triangle is right-angled triangle. }
\end{aligned}
$$

Q. 7 Show that mid point of hypotenuse a right triangle is equidistant from its vertices.

Solution:

Let $A O B$ be any triangle with vertex O is at origin.

Therefore, coordinates of O, A, and B will be O $(0,0), A(a, o) B(o, b)$.
Coordinates of mid point M are $=$ $\left(\frac{a+0}{2}, \frac{0+b}{2}\right)=\left(\frac{a}{2}, \frac{b}{2}\right)$

We have to prove that mid point of hypotenous is equidistant from its vertical i.e.

$$
\begin{align*}
& |\overrightarrow{\mathrm{OM}}|=|\overrightarrow{\mathrm{AM}}|=|\overrightarrow{\mathrm{BM}}| \\
& \left.\overrightarrow{\mathrm{OM}}=\left(\frac{\mathrm{a}}{2}-0\right) \underline{i}+\left(\frac{\mathrm{b}}{2}-0\right) \underline{\mathrm{j}}\right)=\frac{\mathrm{a}}{2} \underset{\underline{i}}{ }+\frac{\mathrm{b}}{2} j \\
& |\overrightarrow{\mathrm{OM}}|=\sqrt{\left(\frac{\mathrm{a}}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}}=\sqrt{\frac{\mathrm{a}^{2}}{4}+\frac{b^{2}}{4}}=\sqrt{\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{4}}=\frac{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}{2} \tag{i}\\
& \overrightarrow{\mathrm{AM}}=\left(\frac{\mathrm{a}}{2}-\mathrm{a}\right) \underline{i}+\left(\frac{\mathrm{b}}{2}-0\right) \underline{\mathrm{j}} \equiv \frac{-\mathrm{a}}{2} i+\frac{\mathrm{b}}{2} \underline{j} \text {. COM } \\
& |\overrightarrow{\mathrm{AM}}|=\sqrt{\left(\frac{-\mathrm{a}}{2}\right)^{2}+\left(\frac{\mathrm{b}}{2}\right)^{2}}=\sqrt{\frac{\mathrm{a}^{2}}{4}+\frac{\mathrm{b}^{2}}{4}} \\
& =\sqrt{\frac{a^{2}+b^{2}}{4}}=\frac{\sqrt{a^{2}+b^{2}}}{2} \tag{ii}\\
& \overrightarrow{B M}=\left(\frac{\mathrm{a}}{2}-0\right) \underline{i}+\left(\frac{\mathrm{b}}{2}-\mathrm{b}\right) \underline{\mathrm{j}}=\frac{\mathrm{a}}{2} \underline{i}-\frac{\mathrm{b}}{2} \underline{j} \\
& |\overrightarrow{\mathrm{BM}}|=\sqrt{\left(\frac{\mathrm{a}}{2}\right)^{2}+\left(\frac{-\mathrm{b}}{2}\right)^{2}}=\sqrt{\frac{\mathrm{a}^{2}}{4}+\frac{\mathrm{b}^{2}}{4}}=\sqrt{\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{4}}=\frac{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}{2} \tag{iii}
\end{align*}
$$

From (i) (ii) \& (iii) M is equidistant from its vertices.

Q. 8 Prove that perpendicular bisectors of the sides of a triangle are concurrent.

Solution:

Let $\overrightarrow{\mathrm{OD}} \& \overrightarrow{\mathrm{OE}}$ be the perpendicular
bisectors of the sides $\overrightarrow{A B}$ and $\overrightarrow{B C}$.
Let F be mid point of AC . Join F with O .
Let O is taken as origin.
Since $\overrightarrow{\mathrm{OD}}$ is perpendicular to $\overrightarrow{\mathrm{AB}}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{OD}} \cdot \overrightarrow{\mathrm{AB}}=0 \\
& \left(\frac{\underline{\mathrm{a}+\underline{b}}}{2}\right) \cdot(\underline{b}-\underline{a})=0
\end{aligned}
$$

$(\underline{b}+\underline{a}) \cdot(\underline{b}-\underline{a})=0 \times 2$
$\Rightarrow \quad b^{2}-a^{2}=0$
Again $\overrightarrow{\mathrm{OE}}$ is perpendicular to $\overrightarrow{\mathrm{BC}}$
$\overrightarrow{\mathrm{OE}} \cdot \overrightarrow{\mathrm{BC}}=0$
$\left(\frac{\mathrm{b}+\mathrm{c}}{2}\right) \cdot(\underline{c}-\underline{b})=0 \times 2$
$(\underline{c}+\underline{b}) \cdot(\underline{c}-\underline{b})=0 \times 2$
$\Rightarrow \quad c^{2}-b^{2}=0$
Adding (i) \& (ii) we have

$$
\begin{aligned}
& \mathrm{b}^{2}-\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}=0 \\
& \mathrm{c}^{2}-\mathrm{a}^{2}=0 \\
& (\underline{\mathrm{c}}+\underline{\mathrm{a}}) \cdot(\underline{\mathrm{c}}-\underline{\mathrm{a}})=0 \\
& \left(\frac{\mathrm{c}+\underline{\mathrm{a}}}{2}\right) \cdot(\underline{\mathrm{c}}-\underline{\mathrm{a}})=0 \\
& \overrightarrow{\mathrm{OF}} \cdot \overrightarrow{\mathrm{AC}}=0
\end{aligned}
$$

Which shows that $\overrightarrow{\mathrm{OF}}$ is perpendicular to $\overrightarrow{\mathrm{AC}}$. Hence perpendicular bisectors of the sides of a triangle are concurrent.

Q. 9 Prove that the attitudes of a triangle are concurrent. (Lahore Board 2009)

Solution:

Let AD, BE be the attitudes drawn from vertices A, B, respectively. Join C to O \& produce it meet AB at F .
Since $\overrightarrow{\mathrm{AD}} \perp \overrightarrow{\mathrm{BC}} \Rightarrow \overrightarrow{\mathrm{AO}} \perp \overrightarrow{\mathrm{BC}}$ also

$$
\begin{align*}
& \overrightarrow{\mathrm{AO}} \cdot \overrightarrow{\mathrm{BC}}=0 \\
& -\mathrm{a} \cdot(\underline{\mathrm{c}}-\underline{\mathrm{b}})=0 \\
& -\underline{\mathrm{a}} \cdot \underline{\mathrm{c}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{~b}}=0 \\
& \underline{\mathrm{a}} \cdot \underline{\mathrm{~b}}=\underline{\mathrm{a}} \cdot \underline{\mathrm{c}} \tag{i}
\end{align*}
$$

Since $\overrightarrow{\mathrm{BE}} \perp \overrightarrow{\mathrm{AC}}$

$\Rightarrow \quad \overrightarrow{\mathrm{BO}} \perp \overrightarrow{\mathrm{AC}} \quad \Rightarrow \overrightarrow{\mathrm{BO}} \cdot \overrightarrow{\mathrm{AC}}=0$
$\Rightarrow \quad-\underline{b} \cdot(\underline{c}-\underline{a})=0$
$\Rightarrow \quad-\underline{b} \cdot \underline{\mathrm{c}}+\underline{\mathrm{b}} \cdot \underline{\mathrm{a}}=0$
$\underline{\mathrm{a}} \cdot \underline{\mathrm{b}}=\underline{\mathrm{b}} \cdot \underline{\mathrm{c}}$
from (i) \& (ii) we have
$\underline{\mathrm{a}} \cdot \underline{\mathrm{c}}=\underline{\mathrm{b}} \cdot \underline{\mathrm{c}}$
$\underline{\mathrm{a}} \cdot \underline{\mathrm{c}}-\underline{\mathrm{b}} \cdot \underline{\mathrm{c}}=0$
$-\underline{c} \cdot(\underline{b}-\underline{a})=0$
$\overrightarrow{O F} \cdot \overrightarrow{A B}=0$ UALघचलीतY.COV
Thus $\overrightarrow{\mathrm{OF}} \perp \overrightarrow{\mathrm{AB}}$
$\Rightarrow \quad \overrightarrow{\mathrm{CF}} \perp \overrightarrow{\mathrm{AB}}$
Shows altitudes of a triangle are concurrent.
Q. 10 Proved that the angle is a semi circle is a right angle.
(Gujranwala Board 2006, Lahore Board, 2007)

Solution:

Let AQB be a semi circle of radius a with center at origin. Take x -axis along $A B$. Let $P(x, y)$ be any point on semicircle. Join A and B with P join O and P.
Now

$$
\overrightarrow{\mathrm{OA}}=-\mathrm{a} \underline{i}
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{OB}}=\mathrm{a} \underline{i} \\
& \overrightarrow{\mathrm{OP}}=\mathrm{a} \text { (radius given) } \\
& |\overrightarrow{\mathrm{OP}}|^{2}=\mathrm{a}^{2} \quad \text {.................... (i) } \\
& \overrightarrow{\mathrm{OP}}=\mathrm{x} \underline{i}+\mathrm{y} \underline{j} \\
& |\overrightarrow{\mathrm{OP}}|=\sqrt{\mathrm{x}^{2}+y^{2}} \quad \Rightarrow|\overrightarrow{\mathrm{OP}}|=x^{2}+y^{2} \\
& =x^{2}+y^{2}=a^{2} \quad \text {............ (ii) using (i) } \\
& \overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{OP}}-\overrightarrow{\mathrm{OA}} \\
& \overrightarrow{\mathrm{AP}}=(\mathrm{x}+\mathrm{a}) \underline{i}+(\mathrm{y}-0) \underline{j}=(\mathrm{x}+\mathrm{a}) \underline{i}+\mathrm{y} \underline{j} \\
& \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{OP}}-\overrightarrow{\mathrm{OB}} \\
& =(\mathrm{x}-\mathrm{a}) \underline{i}+(\mathrm{y}-0) \underline{j}=(\mathrm{x}-\mathrm{a}) \underline{i}+\mathrm{y} \underline{j} \\
& \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}=((\mathrm{x}+\mathrm{a}) \underline{i}+\mathrm{y} \underline{j}) \cdot((\mathrm{x}-\mathrm{a}) \underline{i}+\mathrm{y} \underline{j}) \\
& =x^{2}-a^{2}+y^{2} \\
& =x^{2}+y^{2}-a^{2} \\
& =a^{2}-a^{2}=0 \quad \text { (Using ii) }
\end{aligned}
$$

Hence $\overrightarrow{\mathrm{AP}}$ is perpendicular to $\overrightarrow{\mathrm{BP}}$
$\therefore \angle \mathrm{APB}=90^{\circ}$
Q. 11 Prove that $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \quad$ (Lahore Board 2007,2011) Solution:

Let \hat{a} and \hat{b} be two unit vectors making angles α and β with x -axis Therefore, we can write

$$
\begin{aligned}
& \hat{\mathrm{a}}=\cos \alpha \underline{i}+\sin \alpha \underline{\mathrm{j}} \\
& \hat{\mathrm{~b}}=\cos \beta \underline{i}-\sin \beta \underline{\mathrm{j}} \\
& \hat{\mathrm{a}} \cdot \hat{\mathrm{~b}}=(\cos \alpha \underline{i}+\sin \alpha \underline{\mathrm{j}}) \cdot(\cos \beta \underline{i}-\sin \beta \underline{\mathrm{j}})
\end{aligned}
$$

$|\hat{\mathrm{a}}| \hat{\mathrm{b}} \mid \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

$$
(\because|\hat{\mathrm{b}}|=1,|\hat{\mathrm{a}}|=1)
$$

Hence proved

Q. 12 Prove that in any triangle ABC

(i) $\quad b=c \cos A+a \cos C$

Solution:

$$
b \quad=\cos A+a \cos C
$$

For any triangle $\underline{a}+\underline{b}+\underline{c}=0$

$$
\begin{array}{ll}
\underline{\mathrm{b}} & =-\underline{\mathrm{a}}-\underline{\mathrm{c}} \\
\underline{\mathrm{~b}} & =-(\underline{\mathrm{a}}+\underline{\mathrm{c}}) \tag{i}
\end{array}
$$

Taking dot product with \underline{b}, we have

$$
\begin{aligned}
\underline{\mathrm{b}} \cdot \underline{\mathrm{~b}} & =-\underline{\mathrm{b}} \cdot(\underline{\mathrm{a}}+\underline{\mathrm{c}}) \\
& =-\underline{\mathrm{b}} \cdot \underline{\mathrm{a}}-\underline{\mathrm{b}} \cdot \underline{\mathrm{c}} \\
\mathrm{~b}^{2} & =-|\underline{\mathrm{b}}||\underline{\mathrm{a}}| \cos (\pi-\mathrm{C})-|\underline{\mathrm{b}}||\underline{c}| \cos (\pi-\mathrm{A}) \\
& =-\mathrm{ba}(-\cos (+\mathrm{c})-\mathrm{bc}(-\cos (+\mathrm{A})) \\
\mathrm{b}^{2} & =\mathrm{ba} \cos C+\mathrm{bc} \cos A \\
\mathrm{~b} & =\mathrm{a} \cos \mathrm{C}+\mathrm{c} \cos \mathrm{~A}
\end{aligned}
$$

(Dividing throughout by b) Hence proved

(ii) $\mathbf{c}=\mathbf{a} \cos \mathrm{B}+\mathrm{b} \cos \mathrm{A}$

Solution:

For triangle ABC , we have
$\underline{\mathrm{a}}+\underline{\mathrm{b}}+\underline{\mathrm{c}}=0$
$\underline{c}=-\underline{\mathrm{a}}-\underline{\mathrm{b}}$
$\underline{c}=-(\underline{a}+\underline{b})$
Taking dot product with $\underline{\mathrm{c}}$

$$
\begin{align*}
\underline{\mathrm{c}} \cdot \underline{\mathrm{c}} & =-\underline{\mathrm{c}} \cdot(\underline{\mathrm{a}}+\underline{\mathrm{b}}) \tag{i}\\
\mathrm{c}^{2} & =-\underline{\mathrm{c}} \cdot \underline{\mathrm{a}}-\underline{\mathrm{c}} \cdot \underline{\mathrm{~b}} \\
& =-|\underline{\mathrm{c}}||\underline{\mathrm{a}}| \cos (\pi-\mathrm{B})-|\underline{\mathrm{c}}||\underline{b}| \cos (\pi-\mathrm{A}) \\
\mathrm{c}^{2} & =-\mathrm{ac}(-\cos \mathrm{B})-\operatorname{cb}(-\cos \mathrm{A}) \quad(\because \cos (\pi-\theta)=-\cos \theta) \\
\mathrm{c}^{2} & =\mathrm{ac} \cos \mathrm{~B}+\mathrm{bc} \cos \mathrm{~A} \\
\mathrm{c} & =\mathrm{acos} \mathrm{~B}+\mathrm{b} \cos \mathrm{~A} \quad \text { (dividing by c) } \quad \text { Hence proved. }
\end{align*}
$$

(iii) $b^{2}=c^{2}+a^{2}-2 a c \cos B$

Solution:

For triangle ABC , by vector addition
$\underline{a}+\underline{b}+\underline{c}=0$
$\underline{\mathrm{b}} \quad=-\underline{\mathrm{a}}-\underline{\mathrm{c}}$
$\underline{\mathrm{b}} \quad=-(\underline{\mathrm{a}}+\underline{\mathrm{c}})$
Taking dot product with \underline{b}

$$
\begin{aligned}
\underline{\mathrm{b}} \cdot \underline{\mathrm{~b}} & =-(\underline{\mathrm{a}}+\underline{\overline{\mathrm{c}}}) \cdot \underline{\mathrm{b}} \\
\mathrm{~b}^{2} & =-(\underline{\mathrm{a}}+\underline{\mathrm{c}}) \cdot-(\underline{\mathrm{a}}+\underline{\mathrm{c}}) \\
& =\underline{\mathrm{a}} \cdot \underline{\mathrm{a}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{c}}+\underline{\mathrm{c}} \cdot \underline{\mathrm{a}}+\underline{\mathrm{c}} \cdot \underline{\mathrm{c}} \\
\mathrm{~b}^{2} & =\mathrm{a}^{2}+2 \underline{\mathrm{a}} \cdot \underline{\mathrm{c}}+\mathrm{c}^{2} \quad(\therefore \underline{\mathrm{a}} \cdot \underline{\mathrm{c}}=\underline{\mathrm{c}} \cdot \underline{\mathrm{a}})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{b}^{2} & =\mathrm{a}^{2}+2|\mathrm{a}||\mathrm{c}| \cos (\pi-\mathrm{B})+\mathrm{c}^{2} \\
\mathrm{~b}^{2} & =\mathrm{a}^{2}+2 \mathrm{ac}(-\cos \mathrm{B})+\mathrm{c}^{2} \\
\mathrm{~b}^{2} & =\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ac} \cos \mathrm{~B}
\end{aligned}
$$

Hence proved

$$
\text { (iv) } c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Solution:

```
For triangle ABC
\(\underline{\mathrm{a}}+\underline{\mathrm{b}}+\underline{\mathrm{c}}=0\)
\(\underline{\mathrm{c}}=-\underline{\mathrm{a}}-\underline{\mathrm{b}}\)
\(\underline{c}=-(\underline{a}+\underline{b})\)

Taking dot product by \(\underline{\mathrm{c}}\)
```

$\underline{c} \cdot \underline{c}=-(\underline{a}+\underline{b}) . \underline{c}$
$\bar{c}^{2}=-(\underline{a}+\underline{b}) \cdot-(\underline{a}+\underline{b})$
$=\underline{\mathrm{a}} \cdot \underline{\mathrm{a}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{b}}+\underline{\mathrm{b}} \cdot \underline{\mathrm{a}}+\underline{\mathrm{b}} \cdot \underline{\mathrm{b}}$
$c^{2}=a^{2}+2 \underline{a} \cdot \underline{b}+b^{2} \quad(\because \underline{a} \cdot \underline{b}=\underline{b} \cdot \underline{a})$
$c^{2} \quad=a^{2}+2|\underline{a}||\underline{b}| \cos (\pi-C)+b^{2}$
$c^{2}=a^{2}+2 a b(-\cos C)+b^{2}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

```

Hence proved

Let \(\underline{u} \& \underline{v}\) be two vectors. The cross or vector product of \(\underline{u}\) and \(\underline{v}\) is defined as \(\underline{u} \times \underline{v}=|\underline{u}||\underline{v}| \sin \theta \hat{n}\)
When \(\hat{n}\) is unit vector perpendicular to the plane of \(\underline{u}\) and \(\underline{v}\).
\[
\underline{\mathrm{u}} \times \underline{\mathrm{v}}=|\underline{\mathrm{u}}||\underline{\mathrm{v}}| \operatorname{Sin} \theta \hat{\mathrm{n}}
\]

Where
\[
\begin{aligned}
& \hat{n}=\frac{\underline{u} \times \underline{v}}{\underline{\underline{u}} \times \underline{v} \mid} \\
& \operatorname{Sin} \theta=\frac{\underline{u} \times \underline{v}}{|\underline{u}||\underline{v}| \hat{n}}
\end{aligned}
\]
\[
\operatorname{Sin} \theta=\frac{|\underline{\mathrm{u}} \times \underline{v}|}{|\underline{\mathrm{u}}||\underline{v}|}
\]

Important Points;
(i) \(\underline{i} \times \underline{i}=\underline{\mathrm{j}} \times \underline{\mathrm{j}}=\underline{\mathrm{k}} \times \underline{\mathrm{k}}=0\)
(ii) \(\underline{i} \times \underline{\mathrm{j}}=\underline{\mathrm{k}}, \underline{\mathrm{j}} \times \underline{\mathrm{k}}=\underline{i}, \underline{\mathrm{k}} \times \underline{i}=\underline{\mathrm{j}}\)
(iii) \(\quad \underline{i} \times \underline{\mathrm{j}} \neq \underline{\mathrm{j}} \times \underline{i}\) i.e., Cross product is not commutative
(vi) Area of parallelogram \(=|\underline{\mathbf{u}} \times \underline{\mathrm{v}}|\)
(v) Area of triangle \(=\frac{1}{2}|\underline{\mathrm{u}} \times \underline{\mathrm{v}}|\)

\section*{Parallel vectors:}

If \(\underline{u} \& \underline{v}\) area parallel vectors then \(\underline{u} \times \underline{v}=0\)

\section*{EXERCISE 7.4}
Q. 1 Compute the cross product \(\underline{a} \times \underline{b}\) and \(\underline{b} \times \underline{a}\), check your answer by showing that each \(\underline{a}\) and \(\underline{b}\) is perpendicular to \(\underline{a} \times \underline{b}\) and \(\underline{b} \times \underline{a}\).
\[
\text { (i) } \underline{\mathbf{a}}=2 \underline{i}+\underline{\mathbf{j}}-\underline{\mathbf{k}}, \underline{\mathbf{b}}=\underline{i}-\underline{\mathbf{j}}+\underline{\mathbf{k}}
\]

Solution:
\[
\begin{array}{ll} 
& \underline{\mathrm{a}} \times \underline{\mathrm{b}}=\left|\begin{array}{ccc}
\underline{i} & \underline{\mathrm{j}} & \underline{k} \\
2 & \underline{a} & -1 \\
1 & -1 & 1
\end{array}\right| \\
= & \underline{i}\left|\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right|-\underline{\mathrm{j}}\left|\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right|+\underline{\mathrm{k}}\left|\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right| \\
= & \underline{i}(1-1)-\underline{\mathrm{j}}(2+1)+\underline{k}(-2-1) \\
\underline{\mathrm{a}} \times \underline{\mathrm{b}}=0 \underline{i}-3 \underline{\mathrm{j}}-3 \underline{k}
\end{array}
\]

We will show that \(\underline{\mathrm{a}}\) is perpendicular to \(\underline{\mathrm{a}} \times \underline{\mathrm{b}}\), for this we have \(\underline{\mathrm{a}} \cdot(\underline{\mathrm{a}} \times \underline{\mathrm{b}})\)
\[
\begin{aligned}
& =\quad(2 \underline{i}+\underline{\mathrm{j}}-\underline{k}) \cdot(0 \underline{i}-3 \underline{\mathrm{j}}-3 \underline{k}) \\
& =\quad 0-3+3=0
\end{aligned}
\]
\(\therefore \quad \underline{\mathrm{a}}\) and \(\underline{\mathrm{a}} \times \underline{\mathrm{b}}\) are perpendicular.
Next, we will show that \(\underline{b}\) is perpendicular to \(\underline{a} \times \underline{b}\). For this we have \(\underline{b}\). \((\underline{a} \times \underline{b})\)
\[
(\underline{i}-\underline{j}+\underline{k}) \cdot(0 \underline{i}-3 \underline{j}-3 \underline{k})
\]```

