Exercise 2.8

Question #1

Operation \oplus performed on the two-member set $G = \{0,1\}$ is shown in the adjoining table. Answers the questions:

- (i) Name the identity element if it exists?
- (ii) What is the inverse of 1?
- (iii) Is the set G, under the given operation a group?

Abelian and non-abelian?

\oplus	0	1
0	1	1
1	1	0

Solutions

i) From the given table we have

$$0+0=0$$
 and $0+1=1$

This show that 0 is the identity element.

- ii) Since 1+1=0 (identity element) so the inverse of 1 is 1.
- iii) It is clear from table that element of the given set satisfy closure law, associative law, identity law and inverse law thus given set is group under \oplus .

Also it satisfies commutative law so it is an abelian group.

Question #2

The operation \oplus as performed on the set $\{0,1,2,3\}$ is shown in the adjoining table, shown that the set is an Abelian group?

Solution

Suppose $G = \{0,1,2,3\}$

- i) The given table show that each element of the table is a member of G thus closure law holds.
- ii) \oplus is associative in G.
- iii) Table show that 0 is identity element w.r.t. \oplus .
- iv) Since 0 + 0 = 0, 1 + 3 = 0, 2 + 2 = 0, 3 + 1 = 0

\Rightarrow	$0^{-1} = 0$	$1^{-1} = 3$	$2^{-1} =$	$2, 3^{-1} = 1$
_	-0	, I - J	, 4 -	2, 5 -1

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

v) As the table is symmetric w.r.t. to the principal diagonal. Hence commutative law holds.

Ouestion #3

For each of the following sets, determine whether or not the set forms a group with respect to the indicated operation. From above table solve these (i-v) options.

Solution

- (i) As $0 \in \mathbb{Q}$, multiplicative inverse of 0 in not in set \mathbb{Q} . Therefore the set of rational number is not a group w.r.t to "·".
- (ii) a-Closure property holds in \mathbb{Q} under + because sum of two rational number is also rational.
- b- Associative property holds in \mathbb{Q} under addition.
- c- $0 \in \mathbb{Q}$ is an identity element.

FSc-I / 2.8 - 2

d- If $a \in \mathbb{Q}$ then additive inverse $-a \in \mathbb{Q}$ such that a + (-a) = (-a) + a = 0. Therefore the set of rational number is group under addition.

- (iii) *a* Since for $a,b \in \mathbb{Q}^+$, $ab \in \mathbb{Q}^+$ thus closure law holds.
- b- For $a,b,c \in \mathbb{Q}$, a(bc) = (ab)c thus associative law holds.
- c- Since $1 \in \mathbb{Q}^+$ such that for $a \in \mathbb{Q}^+$, $a \times 1 = 1 \times a = a$. Hence 1 is the identity element.

$$d\text{- For }a\in\mathbb{Q}^+\;,\quad \frac{1}{a}\in\mathbb{Q}^+\;\text{such that }a\times\frac{1}{a}=\frac{1}{a}\times a=1.\;\text{ Thus inverse of }a\;\text{is }\frac{1}{a}.$$

Hence \mathbb{Q}^+ is group under addition.

- (iv) Since $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots \}$
- a- Since sum of integers is an integer therefore for $a, b \in \mathbb{Z}$, $a+b \in \mathbb{Z}$.
- b-Since a+(b+c)=(a+b)+c thus associative law holds in \mathbb{Z} .
- c- Since $0 \in \mathbb{Z}$ such that for $a \in \mathbb{Z}$, $a+0=0+a=\mathbb{Z}$. Thus 0 an identity element.
- d- For $a \in \mathbb{Z}$, $-a \in \mathbb{Z}$ such that a + (-a) = (-a) + a = 0. Thus inverse of a is -a.
- (v) Since $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots \}$

For any $a \in \mathbb{Z}$ the multiplicative inverse of a is $\frac{1}{a} \notin \mathbb{Z}$. Hence \mathbb{Z} is not a group under multiplication.

Question #4

Show that the adjoining table represents the sums of the elements of the set $\{E,O\}$. What is the identity element of this set? Show that this set is abelian group..

Solution

As
$$E + E = E$$
, $E + O = O$, $O + O = E$

Thus the table represents the sums of the elements of set $\{E,O\}$.

The identity element of the set is E because

$$E + E = E + E = E$$
 & $E + O = O + E = E$.

i) From the table each element belong to the set $\{E, O\}$.

Hence closure law is satisfied.

- ii) \oplus is associative in $\{E,O\}$
- iii) E is the identity element of w.r.t to \oplus
- iv) As O + O = E and E + E = E, thus inverse of O is O and inverse of E is E.
- v) As the table is symmetric about the principle diagonal therefore \oplus is commutative.

Hence $\{E,O\}$ is abelian group under \oplus .

Question # 5

Show that the set $\{1, \omega, \omega^2\}$, when $\omega^3 = 1$ is an abelian group w.r.t. ordinary multiplication.

Solution

Suppose
$$G = \{1, \omega, \omega^2\}$$

\otimes	1	ω	ω^2
1	1	ω	ω^2
ω	ω	ω^2	1
ω^2	an ²	1	ci(W)

 $E \mid O$

- i) A table show that all the entries belong to G.
- ii) Associative law holds in G w.r.t. multiplication.

e.g.
$$1 \times (\omega \times \omega^2) = 1 \times 1 = 1$$

 $(1 \times \omega) \times \omega^2 = \omega \times \omega^2 = 1$

iii) Since $1 \times 1 = 1$, $1 \times \omega = \omega \times 1 = \omega$, $1 \times \omega^2 = \omega^2 \times 1 = \omega^2$

Thus 1 is an identity element in G.

iv) Since $1 \times 1 = 1 \times 1 = 1$, $\omega \times \omega^2 = \omega^2 \times \omega = 1$, $\omega^2 \times \omega = \omega \times \omega^2 = 1$ therefore inverse of 1 is 1, inverse of ω is ω^2 , inverse of ω^2 is ω .

v) As table is symmetric about principle diagonal therefore commutative law holds in *G*.

Hence G is an abelian group under multiplication.

Question # 6

If G is a group under the operation * and $a,b \in G$, find the solutions of the equations: a*x=b, x*a=b

Solution

Given that G is a group under the operation * and $a,b \in G$ such that

$$a * x = b$$

As $a \in G$ and G is group so $a^{-1} \in G$ such that

$$a^{-1} * (a * x) = a^{-1} * b$$

 $\Rightarrow (a^{-1} * a) * x = a^{-1} * b$ as associative law hold in G .
 $\Rightarrow e * x = a^{-1} * b$ by inverse law.
 $\Rightarrow x = a^{-1} * b$ by identity law.

And for

$$x*a=b$$

$$\Rightarrow (x*a)*a^{-1}=b*a^{-1}$$
 For $a \in G$, $a^{-1} \in G$

$$\Rightarrow x*(a*a^{-1})=b*a^{-1}$$
 as associative law hold in G .
$$\Rightarrow x*e=b*a^{-1}$$
 by inverse law.
$$\Rightarrow x=b*a^{-1}$$
 by identity law.

Question # 7

Show that the set consisting of elements of the form $a + \sqrt{3}b$ (a,b being rational), is an abelian group w.r.t. addition.

Solution

Consider
$$G = \{a + \sqrt{3}b \mid a, b \in \mathbb{Q}\}$$

i) Let $a + \sqrt{3}b$, $c + \sqrt{3}d \in G$, where a, b, c & d are rational.

$$(a+\sqrt{3}b)+(c+\sqrt{3}d)=(a+c)+\sqrt{3}(b+d)=a'+\sqrt{3}b'\in G$$

where a' = a + c and b' = b + d are rational as sum of rational is rational.

Thus closure law holds in G under addition.

ii) For $a + \sqrt{3}b$, $c + \sqrt{3}d$, $e + \sqrt{3}f \in G$

AllResult.pk

$$(a+\sqrt{3}b)+\left((c+\sqrt{3}d)+(e+\sqrt{3}f)\right) = (a+\sqrt{3}b)+\left((c+e)+\sqrt{3}(d+f)\right)$$

$$= (a+(c+e))+\sqrt{3}\left(b+(d+f)\right)$$

$$= (a+c)+e)+\sqrt{3}\left((b+d)+f\right)$$
As associative law hold in \mathbb{Q}

$$= \left((a+c)+\sqrt{3}(b+d)\right)+(e+\sqrt{3}f)$$

$$= \left((a+\sqrt{3}b)+(c+\sqrt{3}d)\right)+(e+\sqrt{3}f)$$

Thus associative law hold in G under addition.

iii)
$$0 + \sqrt{3} \cdot 0 \in G$$
 as 0 is a rational such that for any $a + \sqrt{3}b \in G$
 $(a + \sqrt{3}b) + (0 + \sqrt{3} \cdot 0) = (a + 0) + \sqrt{3}(b + 0) = a + \sqrt{3}b$
And $(0 + \sqrt{3} \cdot 0) + (a + \sqrt{3}b) = (0 + a) + \sqrt{3}(0 + b) = a + \sqrt{3}b$

Thus $0 + \sqrt{3} \cdot 0$ is an identity element in G.

iv) For $a + \sqrt{3}b \in G$ where a & b are rational there exit rational -a & -b such that

$$(a+\sqrt{3}b)+((-a)+\sqrt{3}(-b))=(a+(-a))+\sqrt{3}(b+(-b))=0+\sqrt{3}\cdot 0$$

&
$$((-a) + \sqrt{3}(-b)) + (a + \sqrt{3}b) = ((-a) + a) + \sqrt{3}((-b) + b) = 0 + \sqrt{3} \cdot 0$$

Thus inverse of $a + \sqrt{3}b$ is $(-a) + \sqrt{3}(-b)$ exists in G.

v) For
$$a + \sqrt{3}b$$
, $c + \sqrt{3}d \in G$

$$(a + \sqrt{3}b) + (c + \sqrt{3}d) = (a + c) + \sqrt{3}(b + d)$$

$$= (c + a) + \sqrt{3}(d + b)$$
 As commutative law hold in \mathbb{Q} .

$$= (c + d\sqrt{3}) + (a + \sqrt{3}b)$$

Thus Commutative law holds in G under addition.

And hence *G* is an abelian group under addition.

Question 8

Determine whether (P(S),*), where * stands for intersection is a semi group, a monoid or neither. If it is a monoid, specify its identity.

Solution

Let $A, B \in P(S)$ where A & B are subsets of S.

As intersection of two subsets of S is subset of S.

Therefore $A * B = A \cap B \in P(S)$. Thus closure law holds in P(S).

For $A, B, C \in P(S)$

$$A*(B*C) = A \cap (B \cap C) = (A \cap B) \cap C = (A*B)*C$$

Thus associative law holds and P(S).

And hence (P(S),*) is a semi-group.

For $A \in P(S)$ where A is a subset of S we have $S \in P(S)$ such that

$$A \cap S = S \cap A = A$$
.

Thus S is an identity element in P(S). And hence (P(S),*) is a monoid.

Question 9

Complete the following table to obtain a semi-group under *

Let x_1 and x_2 be the required elements.

By associative law

$$(a*a)*a = a*(a*a)$$

$$\Rightarrow c*a = a*c$$

$$\Rightarrow x_1 = b$$

Now again by associative law (a*a)*b = a*(a*b)

$$\Rightarrow c*b=a*a \Rightarrow x_2=c$$

*	а	b	c
а	С	а	b
b	a	b	С
С	x_1	x_2	а

Question 10

Prove that all 2×2 non-singular matrices over the real field form a non-abelian group under multiplication.

Solution Let G be the all non-singular 2×2 matrices over the real field.

Let $A, B \in G$ then $A_{2\times 2} \times B_{2\times 2} = C_{2\times 2} \in G$ i)

Thus closure law holds in G under multiplication.

ii) Associative law in matrices of same order under multiplication holds. therefore for $A, B, C \in G$

$$A \times (B \times C) = (A \times B) \times C$$

 $I_{2\times 2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is a non-singular matrix such that $A_{2\times 2} \times I_{2\times 2} = I_{2\times 2} \times A_{2\times 2} = A_{2\times 2}$ as I is an identity element in G

$$A_{2\times2} \times I_{2\times2} = I_{2\times2} \times A_{2\times2} = A_{2\times2}$$

Thus $I_{2\times 2}$ is an identity element in G.

- Since inverse of non-singular square matrix exists, therefore for $A \in G$ there exist $A^{-1} \in G$ such that $AA^{-1} = A^{-1}A = I$.
- As we know for any two matrices $A, B \in G$, $AB \neq BA$ in general.

Therefore commutative law does not holds in G under multiplication.

Hence the set of all 2×2 non-singular matrices over a real field is a non-abelian group under multiplication.