Question #1

Find A.M. between

(i)
$$3\sqrt{5}$$
 and $5\sqrt{5}$

(ii)
$$x-3$$
 and $x+5$

(iii)
$$1 - x + x^2$$
 and $1 + x + x^2$

Solution

(i) $3\sqrt{5}$ and $5\sqrt{5}$

Here
$$a = 3\sqrt{5}$$
 and $b = 5\sqrt{5}$, so

A.M.
$$=\frac{a+b}{2} = \frac{3\sqrt{5} + 5\sqrt{5}}{2} = \frac{8\sqrt{5}}{2} = 4\sqrt{5}$$

(ii) x-3 and x+5

Here
$$a = x - 3$$
 and $b = x + 5$

A.M.
$$=$$
 $\frac{a+b}{2} = \frac{x-3+x+5}{2} = \frac{2x+2}{2} = x+1$

(iii) $1-x+x^2$ and $1+x+x^2$

Here
$$a = 1 - x + x^2$$
 and $b = 1 + x + x^2$

A.M.
$$=\frac{a+b}{2} = \frac{1-x+x^2+1+x+x^2}{2} = \frac{2+2x^2}{2} = 1+x^2$$

Ouestion #2

If 5,8 are two A.Ms between a and b, find a and b.

Solution

Since 5, 8 are two A.Ms between a and b.

Therefor a, 5, 8, b are in A.P.

Here
$$a_1 = a$$
 and $d = 8 - 5 = 3$

Now
$$a_2 = a_1 + d \implies 5 = a + 3 \implies 5 - 3 = a \implies \boxed{a = 2}$$

Also
$$a_4 = a_1 + 3d \implies b = 2 + 3(3) \implies b = 11$$

Ouestion # 3

Find 6 A.Ms between 2 and 5.

solution

Let A_1, A_2, A_3, A_4, A_5 and A_6 are six A.Ms between 2 and 5.

Then $2, A_1, A_2, A_3, A_4, A_5, A_6, 5$ are in A.P.

Here
$$a_1 = 2$$
 and $a_8 = 5$

$$\Rightarrow a_1 + 7d = 5 \Rightarrow 2 + 7d = 5$$

$$\Rightarrow 7d = 5 - 2 \Rightarrow 7d = 3 \Rightarrow d = \frac{3}{7}$$

So
$$A_1 = a_2 = a_1 + d = 2 + \frac{3}{7} = \frac{17}{7}$$

FSc-I / Ex 6.3 - 2

$$A_{2} = a_{3} = a_{1} + 2d = 2 + 2\left(\frac{3}{7}\right) = 2 + \frac{6}{7} = \frac{20}{7}$$

$$A_{3} = a_{4} = a_{1} + 3d = 2 + 3\left(\frac{3}{7}\right) = 2 + \frac{9}{7} = \frac{23}{7}$$

$$A_{4} = a_{5} = a_{1} + 4d = 2 + 4\left(\frac{3}{7}\right) = 2 + \frac{12}{7} = \frac{26}{7}$$

$$A_{5} = a_{6} = a_{1} + 5d = 2 + 5\left(\frac{3}{7}\right) = 2 + \frac{15}{7} = \frac{29}{7}$$

$$A_{6} = a_{7} = a_{1} + 6d = 2 + 6\left(\frac{3}{7}\right) = 2 + \frac{18}{7} = \frac{32}{7}$$
Hence $\frac{17}{7}$, $\frac{20}{7}$, $\frac{23}{7}$, $\frac{26}{7}$, $\frac{29}{7}$, $\frac{32}{7}$ are six A.Ms between 2 and 5.

Question #4

Find 4 A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$.

Solution

Suppose A_1 , A_2 , A_3 and A_4 are four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$.

Then
$$\sqrt{2}$$
, A_1 , A_2 , A_3 , A_4 , $\frac{12}{\sqrt{2}}$ are in A.P.

Here
$$a_1 = \sqrt{2}$$
 and $a_6 = \frac{12}{\sqrt{2}}$

$$\Rightarrow a_1 + 5d = \frac{12}{\sqrt{2}} \Rightarrow \sqrt{2} + 5d = \frac{12}{\sqrt{2}} \Rightarrow 5d = \frac{12}{\sqrt{2}} - \sqrt{2}$$

$$\Rightarrow 5d = \frac{12 - 2}{\sqrt{2}} \Rightarrow 5d = \frac{10}{\sqrt{2}}$$

$$\Rightarrow d = \frac{2}{\sqrt{2}} = \frac{\left(\sqrt{2}\right)^2}{\sqrt{2}} \Rightarrow d = \sqrt{2}$$

Now
$$A_1 = a_2 = a_1 + d = \sqrt{2} + \sqrt{2} = 2\sqrt{2}$$

$$A_2 = a_3 = a_1 + 2d = \sqrt{2} + 2\sqrt{2} = 3\sqrt{2}$$

$$A_3 = a_4 = a_1 + 3d = \sqrt{2} + 3\sqrt{2} = 4\sqrt{2}$$

$$A_4 = a_5 = a_1 + 4d = \sqrt{2} + 4\sqrt{2} = 5\sqrt{2}$$

Hence $2\sqrt{2}$, $3\sqrt{2}$, $4\sqrt{2}$, $5\sqrt{2}$ are four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$.

Question # 5

Insert 7 A.Ms between 4 and 8.

Solution Do yourself

Question # 6

Find three A.Ms between 3 and 11

Solution

Do yourself

Question #7

Find *n* so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between *a* and *b*.

Solution

Since we know that A.M. (i)

But we have given A.M.
$$=\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$$
....(ii)

Comparing (i) and (ii)

$$\frac{a^{n} + b^{n}}{a^{n-1} + b^{n-1}} = \frac{a + b}{2}$$

$$\Rightarrow 2(a^{n} + b^{n}) = (a + b)(a^{n-1} + b^{n-1}) \qquad Cross \times ing$$

$$\Rightarrow 2a^{n} + 2b^{n} = a^{n} + a^{n-1}b + ab^{n-1} + b^{n}$$

$$\Rightarrow 2a^{n} + 2b^{n} - a^{n} - b^{n} = a^{n-1}b + ab^{n-1}$$

$$\Rightarrow a^{n} + b^{n} = a^{n-1}b + ab^{n-1}$$

$$\Rightarrow a^{n} + b^{n} = a^{n-1}b + ab^{n-1}$$

$$\Rightarrow a^{n} - a^{n-1}b = ab^{n-1} - b^{n}$$

$$\Rightarrow a^{n-1+1} - a^{n-1}b = ab^{n-1} - b^{n-1+1} \qquad \because n = n-1+1$$

$$\Rightarrow a^{n-1}(a - b) = b^{n-1}(a - b)$$

$$\Rightarrow a^{n-1} = b^{n-1}$$

$$\Rightarrow \frac{a^{n-1}}{b^{n-1}} = 1$$

$$\Rightarrow \left(\frac{a}{b}\right)^{n-1} = \left(\frac{a}{b}\right)^{0} \qquad \because \left(\frac{a}{b}\right)^{0} = 1$$

$$\Rightarrow n-1 = 0 \Rightarrow n=1$$

Question #8

Do Yourself