A fair coin is tossed 30 times, the result of which is tabulated below.
Study the table and answer the questions given below the table:

Event	Tally Marks	Frequency
Head	THE THE KILL	14
Tail	III III III I	16

- (i) How many times does 'head' appear?
- (ii) How many times does 'tail' appear?
- (iii) Estimate the probability of the appearance of head?
- (iv) Estimate the probability of the appearance of tail?

Solution. From the table, total outcomes $\pm 30 \Rightarrow n(S) = 30$ From the table, we see that

- (i) Let A = event the times head appears $\implies n(A) = 14$
- (ii) Let B = event the times tail appears $\implies n(B) = 16$
- (iii) Probability that head appears = P(A) = $\frac{n(A)}{n(S)}$ = $\frac{14}{30}$ = $\frac{7}{15}$
- (iv) Probability that tail appears = P(B) = $\frac{n(B)}{n(S)}$ = $\frac{16}{30}$ = $\frac{8}{15}$
- 2. A die is tossed 100 times. The result is tabulated below. Study the table and answer the questions given below the table:

Event	Tally Marks	Frequency	
1	## ## WI	14	
2	THE THE H	17	
8	THE THE THE THE	20	
4	THE THE HI	18	
5	THE THE THE	15	
6	WE THE THE	16	

- (i) How many times do 3 dots appear?
- (ii) How many times do 5 dots appear?
- (iii) How many times does an even number of dots appear?
- (iv) How many times does a prime number of dots appear?
- (v) Find the probability of each one of the above cases.

Solution. From the table, total outcomes = $100 \implies n(S) = 100$ From the table, we see that

- (i) Let A = event, the number of times, 3 dots appear $\Rightarrow n(A) = 20$
- (ii) Let B = event, the number of times 5, dots appear \implies n(B) = 15
- (iii) Let C = event, the number of times, even dots appear

$$\Rightarrow$$
 n(C) = 17 + 18 + 16 = = 51

(iv) Let D = event, the number of times, prime dots appear

$$\Rightarrow$$
 n(D) = 17 + 15 + 20 = 52

Required probabilities are as:

$$P(A) = \frac{n(A)}{n(S)} = \frac{20}{100} = \frac{1}{5}$$
 $P(B) = \frac{n(B)}{n(S)} = \frac{15}{100} = \frac{3}{20}$

$$P(B) := \frac{n(B)}{n(S)} = \frac{15}{100} = \frac{3}{20}$$

$$P(C) = \frac{n(C)}{n(S)} = \frac{51}{100}$$

$$P(C) = \frac{n(C)}{n(S)} = \frac{51}{100},$$
 $P(D) = \frac{n(D)}{n(S)} = \frac{52}{100} = \frac{13}{25}$

The eggs supplied by a poultry farm during a week broke during 3. 1%, 2%, $1\frac{1}{2}\%$, $\frac{1}{2}\%$, 1%, 2%, 1%transit as follows:

Find the probability of the eggs broke in a day. Calculate the number of eggs that will be broken in transiting the following number of eggs:

	1-2	,, .	·, -	
	Solution.	Transit	Broken eggs	No. of eggs
	9.1	1	1.	100
		2	2	100
1.5	1.	3	$1\frac{1}{2}=1.5$	100
		4	$\frac{Y}{2} = 0.5$	100
		5	1	100
		6	2	100
		7	1	100

Total eggs = n(S) = 700

Let A = event the eggs broke $\implies n(A) = 1 + 2 + 1.5 + 0.5 + 1 + 2 + 1 = 9$

$$P(A) = \frac{n(A)}{n(S)} = \frac{9}{700}$$

(i) Number of eggs broke in 7000 =
$$7000 \times \frac{9}{700}$$
 = 90

(ii) Number of eggs broke in 8400 = $8400 \times \frac{9}{700}$ = 108

(i)ii Number of eggs broke in $10500 = 10500 \times \frac{9}{700} = 135$

§ 7.7 ADDITION OF PROBABILITIES.

Notations.

We know that P(E) means the probability of an event E.

Now if A and B are any two events, then

P(A) = probability of occurrence of the event A

P(B) = probability of occurrence of the event B

 $P(A \cup B) = probability of occurrence of the event A or B$

 $P(A \cap B)$ = probability of occurrence of the event A and B

Theorems of Addition of Probabilities.

- I. $P(A \cup B) = P(A \text{ or } B) = P(A) + P(B)$, when A and B are disjoint
- II. $P(A \cup B) = P(A) + P(B) P(A \cap B)$, when A and B are overlapping